Lecture 10

Maximum Modulus Theorem: Iff is analytic in a domain D and if there is a point $a \in D$ such that $|f(a)| \geq|f(z)|$ for all $z \in D$, then f is a constant function.

The above theorem can also be stated as 'A non-constant analytic function cannot take its maximum value at any interior point of D '.

Corollary 1: If f is analytic on a compact (i.e. closed and bounded) set $K \subset C$, then $|f|$ assumes its maximum value on the boundary of K.

Corollary 2: Let $M(r)=\max _{|z| \leq r}|f(z)|$. Then, $M(r)=\max _{|z|=r} \mid f(z)$.

Corollary 3: \quad Let $M(r)=\max _{|z|=r}|f(z)|$. Then, $M(r)$ is an increasing function of r.

The following proposition is needed for the proof of Maximum Modulus Theorem:

Proposition: Let $\varphi(x)$ be continuous and $\varphi(x) \leq K$ in $[a, b]$. If $\frac{1}{b-a} \int_{a}^{b} \varphi(x) d x \geq K \quad(*)$. Then, $\varphi(x) \equiv K$ on $[a, b]$.

Proof: Let $\varphi(c)<K$ for some $c \in(a, b)$. Since $\varphi(x)$ is continuous at c, for some ε_{0},

$$
\begin{aligned}
& \varphi(x) \leq K-\varepsilon_{0} \text { for some interval }\left(c-\delta_{0}, c+\delta_{0}\right) \\
& \Rightarrow \int_{a}^{b} \varphi(x) d x \leq 2 \delta_{0}\left(K-\varepsilon_{0}\right)+\left(b-a-2 \delta_{0}\right) K \\
& =(b-a) K-2 \delta_{0} \varepsilon_{0}, \quad \text { a contradiction of }\left(^{*}\right)
\end{aligned}
$$

Proof of Maximum Modulus Theorem:

Let $|f(z)| \leq|f(a)|$ for all $z \in D$. By Cauchy Integral Formula,

$$
\begin{equation*}
f(a)=\frac{1}{2 \pi i} \oint_{\gamma_{r}} \frac{f(w)}{w-a} d w, \gamma_{r}(t)=a+r e^{i t} \subset D, 0 \leq t \leq 2 \pi . \tag{1}
\end{equation*}
$$

Let, $\frac{f(w)}{f(a)}=\rho(t) e^{i \varphi(t)}$ on $\gamma_{r}(t)$. Therefore, by (1),

$$
\begin{equation*}
1=\frac{1}{2 \pi} \int_{0}^{2 \pi} \rho e^{i \varphi} d t \tag{2}
\end{equation*}
$$

Now, $(2) \Rightarrow 1 \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \rho d t$.

Since, $\rho(t)$ is a continuous function of t and $\rho(t) \leq 1$ (since, $|f(w)| \leq|f(a)|)$. Therefore, by the above proposition, $\rho(t) \equiv 1$ for all t.

Taking real part in (2) with $\rho(t) \equiv 1,1=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \varphi d t$. Since, $\cos \varphi(t)$ is a continuous function of t and $\cos \varphi(t) \leq 1$, using the above proposition again, it follows that $\cos \varphi(t) \equiv 1$.

Since $\rho(t) \equiv 1$ and $\cos \varphi \equiv 1$ on $\gamma_{r}, \frac{f(w)}{f(a)}=\rho(t) e^{i \varphi(t)}$ on γ_{r} gives $f(w)=f(a)$ on γ_{r}. This, in view of Isolated Zeros Theorem, gives that $f(w)=f(a)$ everywhere in D.

Example. Let $f(z)=e^{e^{z}}$ and
$D=\{z=x+i y:-\infty<x<\infty,-\pi / 2 \leq y \leq \pi / 2\}$.

Then, $\quad|f(z)|=e^{\operatorname{Re} e^{z}}=e^{e^{x} \cos y}=1$, if $y= \pm \pi / 2 \Rightarrow|f(z)| \equiv 1 \quad$ on boundary of D.

But, $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.
Thus, $\max |f(z)|$ need not be assumed on the boundary of D , if D is an unbounded domain.

Minimum Modulus Principle. If f is analytic in a domain D and $f(z) \neq 0$ for any $z \in D$, then $|f(z)|$ can not assume its minimum value at any point of D, unless $f(z) \equiv$ constant .

Proof: Apply Maximum Modulus Theorem for $g(z)=\frac{1}{f(z)}$.

Schwarz Lemma. Let f be analytic in $|z| \leq R$ and satisfies $|f(z)| \leq M$ on $|z|=R$. If $f(0)=0$, then,

$$
\begin{equation*}
|f(z)| \leq \frac{M|z|}{R}, \text { for }|z|<R . \tag{1}
\end{equation*}
$$

Further, $\left|f^{\prime}(0)\right| \leq \frac{M}{R}$.
Equality holds in the above inequalities (1) and (2) for some point in $|z|<R$ iff $f(z)=\frac{M}{R} e^{i \alpha} z$, for some real α.

Proof: Define

$$
\varphi(z)= \begin{cases}\frac{f(z)}{z} \text { if } & 0<|z| \leq R \\ f^{\prime}(0) \text { if } z=0\end{cases}
$$

Then, $\varphi(z)$ is analytic in $|z| \leq R$ (because $\varphi(z)$ is given by the power series $\varphi(z)=f^{\prime}(0)+\frac{f^{\prime \prime}(0)}{2} z+\ldots .$. ,which is absolutely convergent at all the points of $|z| \leq R)$.
$\Rightarrow|\varphi(z)| \leq \frac{M}{R}$ for all z on $|z|=R$
$\Rightarrow|\varphi(z)| \leq \frac{M}{R}$ for all z in $|z|<R$, (by Max. Mod. Theorem)
$\Rightarrow|f(z)| \leq \frac{M|z|}{R}$ for all z in $0<|z|<R$
The last inequality is trivially true for $z=0$. This completes the proof of (1).

To prove (2), observe that $\left|f^{\prime}(0)\right|=|\varphi(0)|$,
$\Rightarrow\left|f^{\prime}(0)\right| \leq \frac{M}{R}, \quad$ (by (3))

Equality holds in (1) and (2) for some point z_{0} in $|z|<R$ if and only if $\left|\varphi\left(z_{0}\right)\right|=\frac{M}{R}$
$\Rightarrow|\varphi(z)|$ assumes its maximum at an interior point z_{0} of $|z|<R$.
$\Rightarrow \varphi(z) \equiv \frac{M}{R}$ in $|z|<R \quad$ (by Maximum Modulus Theorem)
$\Leftrightarrow \varphi(z)=\frac{M}{R} e^{i \alpha}$ for some real α in $|z|<R$
$\Leftrightarrow f(z)=\frac{M e^{i \alpha}}{R} z$ in $|z|<R$.

