Lecture 11

Singularities of a Complex Function

A point a is called a singularity of a function $f(z)$ if $f(z)$ is not analytic at the point a.

A singularity a is called an isolated singularity of $f(z)$, if $f(z)$ is analytic in some punctured disk $0<|z-a|<\delta$, i.e. if $f(z)$ does not have any singularity in $0<|z-a|<\delta$, except at the point a.

Examples: (i) Every point on negative real axis is a non-isolated singularity of $\log z$ (ii) The points 0 and 1 are isolated singularities of the function $\frac{1}{z^{2}-z}$.

We are interested here in studying the nature of a function $f(z)$, in a punctured disk centered at an isolated singularity a of $f(z)$.
(for example, (i) existence or nonexistence of $\lim _{z \rightarrow a} f(z)$
(ii) boundedness or unboundedness of $f(z)$, etc.)

For this purpose, we need the following result:

Laurent' Theorem

Let f be analytic in the closed annulus $r_{1} \leq|z-a| \leq r_{2}$. Then, for each point $\mathrm{z} \in\left\{r_{1}<|z-a|<r_{2}\right\}$, it can be expanded as the Laurent's series
$f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}+\sum_{n=1}^{\infty} \frac{d_{n}}{(z-a)^{n}}$
where,
$c_{n}=\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w)}{(w-a)^{n+1}} d w ; n=0,1,2, \ldots$ (ii)

$C_{2}:|w-a|=r_{2}$ is oriented counterclockwise,
$d_{n}=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{1}} d w ; n=1,2, \ldots$ (iii)
$C_{1}:|w-a|=r_{1}$ is oriented counterclockwise.

Notes.

1. If f is analytic in $0<|z-a| \leq r_{2}$, (i) is valid in $0<|z-a|<r_{2}$. If is analytic in $|z-a| \leq r_{1}$, the function $\frac{f(w)}{(w-a)^{-n+1}}$ is analytic inside and on $C_{1} \therefore$ (iii) $=0$
\Rightarrow The Laurent's expansion (i) reduces to Taylor's expansion $(\because-n+1 \leq 0)$ in this case.
2. The Laurent's expansion (i) can also be written as

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} \alpha_{n}(z-a)^{n} \\
& \text { where, } \alpha_{n}=\frac{1}{2 \pi i} \oint \frac{f(w)}{(w-a)^{n+1}} d w ; n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

C being any closed p.w. smooth curve oriented anticlockwise, lying inside the annulus $r_{1}<|z-a|<r_{2}$ and surrounding the point a (follows by using the corollary to Cauchy Theorem for Multiply Connected Domains because the integrands on RHS integrals in (ii) and (iii) are analytic on curves $C, C_{1} \& C_{2}$ and in the domains lying between the curves C_{2}, C and C, C_{1}).

Proof of Laurent's Theorem:

Let z be any point in $r_{1}<|z-a|<r_{2}$.
By Cauchy Theorem for Multiply Connected Domains and Cauchy Integral Formula,

For $w \in C_{2}$,

$$
\begin{aligned}
& \frac{f(w)}{w-z}=f(w)\left[\frac{1}{w-a-(z-a)}\right] \\
& \quad=\frac{f(w)}{w-a}\left[1+\frac{z-a}{w-a}+\ldots+\left(\frac{z-a}{w-a}\right)^{n-1}+\frac{((z-a) /(w-a))^{n}}{1-\frac{z-a}{w-a}}\right]
\end{aligned}
$$

$$
\text { (since, }(1-q)^{-1}=1+q+q^{2}+\ldots+\frac{q^{n}}{1-q}, \text { for } q \neq 1 \text {) }
$$

$$
=\frac{f(w)}{w-a}+\frac{f(w)}{(w-a)^{2}}(z-a)+\ldots+\frac{f(w)}{(w-a)^{n}}(z-a)^{n-1}+\frac{(z-a)^{n} f(w)}{(w-a)^{n}(w-z)}
$$

$$
\Rightarrow \frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w)}{w-z} d w=
$$

$$
\frac{1}{2 \pi i} \oint \frac{f(w)}{w-a} d w
$$

$$
\begin{align*}
& \underbrace{2 \pi i{ }_{C_{2}} w-a}{ }^{\left(\frac{1}{2 \pi i} \oint\right.}{ }_{C_{2}} \frac{f(w)}{(w-a)^{2}} d w)(z-a)+\ldots \ldots \ldots . .+ \tag{1}
\end{align*}
$$

$\left.+\left(\frac{1}{2 \pi i} \oint \frac{f(w)}{(w-a)^{n}} d w\right)(z-a)^{n-1}+\frac{1}{2 \pi i} \oint \frac{(z-a)^{n} f(w)}{C_{C_{2}}(w-a)^{n}(w-z)} d w\right)$
where, for $M=\max _{w \in C_{2}}|f(w)|$,
$\left|R_{n}\right| \leq \frac{1}{2 \pi} \oint \frac{|z-a|^{n}|f(w)|}{C_{2}}|d w| \leq \frac{r^{n} M .2 \pi r_{2}}{2 \pi r_{2}^{n}\left(r_{2}-r\right)}$
$\left(\because|w-z| \geq|w-a|-|z-a|=r_{2}-r\right)$

$$
=\frac{r_{2} M}{r_{2}-r}\left(\frac{r}{r_{2}}\right)^{n} \rightarrow 0 \text { as } n \rightarrow \infty \quad\left(\because \frac{r}{r_{2}}<1\right)
$$

For $w \in C_{1}$,

$$
\begin{align*}
& \frac{f(w)}{w-z}=f(w)\left[\frac{1}{w-a-(z-a)}\right] \\
& =-\frac{f(w)}{z-a}\left[1-\frac{w-a}{z-a}\right]^{-1} \\
& \Rightarrow-\frac{f(w)}{w-z}=\frac{f(w)}{z-a}\left[1+\frac{w-a}{z-a}+\ldots+\left(\frac{w-a}{z-a}\right)^{n-1}+\frac{((w-a) /(z-a))^{n}}{1-\frac{w-a}{z-a}}\right] \\
& =\frac{f(w)}{z-a}+f(w)(w-a) \frac{1}{(z-a)^{2}}+\ldots+f(w)(w-a)^{n-1} \frac{1}{(z-a)^{n}} \\
& +\frac{f(w)(w-a)^{n}}{(z-a)^{n}(z-w)} \\
& \begin{aligned}
\Rightarrow-\frac{1}{2 \pi i} & \oint
\end{aligned} \frac{f(w)}{C_{1}} \frac{f w}{w-z}=\left(\frac{1}{2 \pi i} \oint f(w) d w\right) \frac{1}{C_{B}}+\underbrace{\mathrm{d}_{1}}+\left(\frac{1}{2 \pi i} \oint_{C_{1}} f(w)(w-a) d w\right) \frac{1}{(z-a)^{2}}+\ldots . \\
& \left.\mathrm{d}_{2} \sqrt{+\left(\frac{1}{2 \pi i} \oint_{C_{1}}\right.} f(w)(w-a)^{n-1} d w\right) \frac{1}{(z-a)^{n}} \\
& \mathrm{~d}_{\mathrm{n}}+\frac{1}{2 \pi i} \oint \frac{(w-a)^{n} f(w)}{C_{1}} d w \tag{2}\\
& R_{n}^{*}
\end{align*}
$$

where, for $M^{*}=\max _{w \in C_{1}}|f(w)|$,
$\left|R_{n}^{*}\right|=\left|\frac{1}{2 \pi i} \oint \frac{f(w)(w-a)^{n}}{C_{1}} d z\right| \leq \frac{1}{2 \pi} \frac{\mathrm{M}^{*} 2 \pi r_{1}}{\left(\mathrm{r}-\mathrm{r}_{1}\right)}\left(\frac{\mathrm{r}_{1}}{\mathrm{r}}\right)^{\mathrm{n}}$
$\rightarrow 0$ as $n \rightarrow \infty,\left(\because \frac{r_{1}}{r}<1\right)$.
$\left(\because|z-w| \geq|z-a|-|a-w|=r-r_{1}\right)$

Therefore, the equation (*)
$f(z)=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{2}} d w-\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{1}} d w$,
together with (1) and (2) gives the desired Laurent's expansion.

Proposition. If $\sum_{n=-\infty}^{\infty} \alpha_{n}(z-a)^{n}$ converges to the function $f(z)$ for all the points in $r_{1}<|z-a|<r_{2}$, then it is Laurent's series expansion of $f(z)$ in this annulus.

Proof. Let C be any simple, closed, p.w. smooth anticlockwise oriented curve lying in $r_{1}<|z-a|<r_{2}$ and enclosing the point a. Then, for all $w \in C$,

$$
f(w)=\sum_{n=-\infty}^{\infty} \alpha_{n}(w-a)^{n} .
$$

$$
\begin{aligned}
\Rightarrow \frac{1}{2 \pi i} \oint \frac{f(w)}{(w-a)^{m+1}} d w & =\sum_{n=-\infty}^{\infty} \frac{\alpha_{n}}{2 \pi i} \oint \frac{1}{C(w-a)^{m+1-n}} d w \\
& =\alpha_{m}, \quad m=0, \pm 1, \pm 2, \ldots .
\end{aligned}
$$

$$
\left(\because \oint_{C} \frac{1}{(w-a)^{m+1-n}} d w=\left\{\begin{array}{ll}
0, & \text { if } m \neq n \\
2 \pi i, & \text { if } m=n
\end{array}\right)\right.
$$

Example:

Find Laurent series expansion of $\frac{1}{(z-2)(z-1)}$ for
(a) $1 \leq|z| \leq 2$
(b) $|z|>2$
(c) $|z|<1$
(d) $0<|z-1|<1$.

Solution.
(a) $1 \leq|z| \leq 2$:

Write $\frac{1}{z-2}-\frac{1}{z-1}=-\frac{1}{2}\left(1-\frac{z}{2}\right)^{-1}-\frac{1}{z}\left(1-\frac{1}{z}\right)^{-1}$ and expand RHS as a binomial expansion.
(b) $|z|>2$:

Write $\frac{1}{Z-2}-\frac{1}{z-1}=\frac{1}{Z}\left(1-\frac{2}{z}\right)^{-1}-\frac{1}{z}\left(1-\frac{1}{z}\right)^{-1}$ and expand RHS as a binomial expansion.
(c) $|z|<1$:

Write $\frac{1}{z-2}-\frac{1}{z-1}=-\frac{1}{2}\left(1-\frac{z}{2}\right)^{-1}+(1-z)^{-1}$ and expand RHS as a binomial expansion. Note that the Laurent's expansion in this case is nothing but the Taylor's expansion since the function is analytic in $|z|<1$.
(d) $0<|z-1|<1$:

Write $\frac{1}{z-2}-\frac{1}{z-1}=\frac{1}{z-1-1}-\frac{1}{z-1}=-(1-(z-1))^{-1}-\frac{1}{z-1} \quad$ and expand RHS as a binomial expansion.

Classification of Singularities.

Let the point a be an isolated singularity of a function $f(z)$ and let

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}+\sum_{n=1}^{\infty} d_{n}(z-a)^{-n}
$$

be the Laurent's expansion of $f(z)$ in $0<|z-a|<R$.

The second series on RHS (containing negative powers of ($\mathrm{z}-\mathrm{a}$)) is called the Principal Part of the Laurent's expansion).
(i) If $d_{n}=0 \quad \forall n=1,2, \ldots$, the point a is called a removable singularity of f.
(ii) If $d_{n}=0 \quad \forall n>n_{0}$ but $d_{n_{0}} \neq 0$, the point a is called a pole of order n_{0} of f.
(iii) If $d_{n} \neq 0$ for infinitely many n's, the point a is called an essential singularity of f.

Behaviour of $f(z)$ in the neighbourhood of Removable Singularity:

Proposition. The point a is removable singularity of a function f iff f is bounded in $0<|z-a|<\delta$ for some $\delta>0$.

Proof.

(i) Let f be bounded in $0<|z-a|<\delta$ for some $\delta>0$. Let, $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}+\sum_{n=1}^{\infty} d_{n}(z-a)^{-n}$
be the Laurent's expansion of f. Then, for some r with $0<r<\delta$,
$d_{n}=\frac{1}{2 \pi i} \underset{|w-a|=r}{\oint} \frac{f(w)}{(w-a)^{-n+1}} d w$.
$\Rightarrow\left|d_{n}\right| \leq \frac{1}{2 \pi} \cdot \frac{2 \pi r}{r^{-n+1}} \cdot M$,
where M is the upper bound of $|f(z)|$ in $0<|f(z)|<\delta$.

$$
=M r^{n} \rightarrow 0 \text { as } r \rightarrow 0
$$

$\therefore d_{n}=0 \forall n \geq 1 \Rightarrow a$ is a removable singularity of f.
(ii) Let a be a removable singularity of f. Then, $d_{n}=0 \quad \forall n=1,2, \ldots$. Therefore,

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}, 0<|z-a|<\delta \text { for some } \delta .
$$

Define,

$$
g(z)= \begin{cases}f(z), & \text { if } 0<|z-a|<\delta \\ c_{0}, & \text { if } z=a\end{cases}
$$

Then, $g(z)$ is bounded in $|z-a| \leq \delta_{1}$ for some $\delta_{1}<\delta$.
$\left(\because g(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}\right.$ in $|z-a| \leq \delta_{1}$, hence is analytic $)$
$\Rightarrow f(z)$ is bounded in $0<|z-a|<\delta_{1}$.

Corollary. The point a is a removable singularity of f iff $\lim _{z \rightarrow a}(z-a) f(z)=0$.

Proof.

(i) a is removable singularity of f
$\Rightarrow f$ is bounded in $0<|z-a|<\delta$, for some δ.
$\Rightarrow \lim _{z \rightarrow a}(z-a) f(z)=0$.
(ii) Suppose $\lim _{z \rightarrow a}(z-a) f(z)=0$.
\Rightarrow for every $\varepsilon>0$, there exists a $\delta>0$ such that
$|f(z)|<\frac{\varepsilon}{|z-a|}$ for $0<|z-a|<\delta$.
Therefore, $\left.d_{n}=\frac{1}{2 \pi i} \oint_{|w-a|=r} \frac{f(w)}{(w-a)^{-n+1}} d w,\right), 0<r<\delta$. This gives,
$\left|d_{n}\right| \leq \frac{1}{2 \pi} \cdot \frac{\varepsilon}{r^{-n+2}} .2 \pi r=\frac{\varepsilon}{r^{1-n}} \rightarrow 0$ as $r \rightarrow 0$, if $n>1$
and, since by using the above estimate again with $n=1,\left|d_{1}\right| \leq \varepsilon$ and ε is arbitrary, $\mathrm{d}_{1}=0$
$\Rightarrow f(z)$ has a removable singularity at the point a.

