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Lecture	12	
	
Behaviour	of	 ( )f z 	in	the	neighbourhood	of	Pole:	
	
Proposition.	 The	 point	 a 	 is	 a	 pole	 of	 order	 m	 of	 f	 	 iff		
lim( ) ( ) , 0,m

z a
z a f z A A


    .	

	
Proof.		
	
(i) If	the	point	a 	is	a	pole	of	order	m	of	f,	then	

	 	    
0 1

( )
mn n

n n
n n

f z c z a d z a
 

 
     , 0md  .	

	 							 lim( ) ( ) 0,m
m

z a
z a f z d


     .
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(ii) If	 	 lim( ) ( ) , 0,m

z a
z a f z A A


    ,	then	 for	every	 0  	 there	

exists	 a	 0  	 such	 that	 ( )
m

A
f z

z a





in	 0 z a    .	

Therefore,	
	

  1

1 ( )
, 0 ,

2n n
w a r

f w
d dw r

i w a


  
 
  


 	gives	

	

1

1
. .2 0 0,

2n m n m n

A A
d r as r if n m

r r

 


   
 

     	

		
0,nd if n m   .	

	
For	n	=	m,	using	that	 0kd if k m  ,		
	 	

			
  1

1
0

lim( ) ( )

lim( ( ) ... )

m

z a

n m m
n m m

z a n

A z a f z

c z a d z a d d


  

 


 

      
	

	
	 0md  f		has	a	pole	of	order	m	at	the	point	a .
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	Proposition.	f		has	pole	of	order	m	at	the	point	a 		iff		1/f		has	a	
zero	of	order	m	at	a .	
	
Proof.		
	
(i) Let	 f	 	 have	 a	 pole	 of	 order	m	at	 a .	 Then,	 by	 definition	 of	

Pole,		
	

   
0 1

( ) , 0
mn n

n n m
n n

f z c z a d z a d
 

 
      		 				

					  1 1
0

( ) ( ( ) ... ( ) )n mm m
m m n

n
z a d d z a d z a c z a

 



         	

					 ( ) ( )mz a z  ,		
	
where,	 ( )z 	 is	 analytic	 in	 z a R  	 for	 some	 R	 and	

( ) 0ma d   .	
	
Since	 ( )z 	 is	 continuous,	 ( ) 0z  	 in	 some	 neighbourhood	
z a R   .	

1
( ) ( ), ( )

( )

& ( ) 0

mz a z where z is analytic in z a
f z

a

  



    


	

	
1
( )f z

 	 has	 a	 zero	 of	 order	 m	 at	 the	 point	 a .
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(ii) If	
1
( )f z

	has	a	zero	of	order	m	at	the	point	a ,	then	

1
( ) ( ),

( )

( ) 0 & ( ) 0 .

mz a z
f z

where a z is analytic in z a



  

 

   
	

	

1

( ) ( ) ( ),

( ) 0 .

mf z z a z

where z is analytic and nonzero in z a


 

  

  
	

(since	zeros	are	isolated)	
	

  0
0

( ) ( ) ( ), 0nm
n

n
f z z a c z a c




     .	

( )f z 	has	a	pole	of	order	m	at	the	point	a .	
	
	

Corollary.	f		has	a	pole	at	the	point	a 		iff		 lim ( )
z a

f z


 
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Behaviour	of	 ( )f z 	in	the	neighbourhood	of	Essential	Singularity:	
	
Proposition.	A	function	f	has	an	essential	 	singularity	 	at	 	 a 	 	iff		
lim ( )
z a

f z


	does	not	exist.	

	
Proof.	
	
(i) Let	 a	 function	 f	 	 have	 an	 essential	 singularity	 at	 a 	 and		
lim ( )
z a

f z


=	A	exists.		

	
If	 A   ,	 then	 f	 will	 have	 a	 removable	 singularity	 at	 a 	 	 a	
contradiction.		
	
If	A   ,	f		has	a	pole	at	the	point	a 	 	a	contradiction.		
	
Therefore,	 lim ( )

z a
f z


	does	not	exist.	

	
(ii) If	 lim ( )

z a
f z


	 does	 not	 exist,	 then	 the	 point	 a 	 can	 not	 be	 a	

pole	or	removable	singularity		
	
 	the	point	a 		is	an	essential	singularity	of		f.	
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Singularity	at	 .	 	A	 function	 f(z)	 	 is	said	to	have	a	singularity	
(removable,	 pole	 or	 essential)	 at	  ,	 if	 f(1/z)	 has	 a	 singularity	
(removable,	pole	or	essential	respectively)	at	z	=	0.	
	
Examples.	
	
(i)			 0 1( ) .... , 0n

n nP z a a z a z a     	has	a	pole	of	order	n	at	 .	
(ii)		 ze has	an	essential	singularity	at	 .	
(iii)	 1/ze is	analytic	at	 .	
	
	
Nonisolated	singularities.		
	
Example:	 Let	 f	 have	 a	 pole	 at	 , 1,2,...nz n  ,	 and	 nz a 	 as	
n  ,	 then	 a	 is	 a	 non‐isolated	 singularity	 of	 f.	 Take,	 e.g.,		

1
( )cosec
z
,	where	 1/nz n and	a	=	0.		
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Residues	and	Integration	
	
Let	the	function	 f(z)	have	an	isolated	singularity	at	a	point	 ‘a ’		
and		
	

   
0 1

( ) n n
n n

n n

f z c z a d z a
 



 

     																(*)	

	
be	the	Laurent’s	expansion	of	f(z)	in	the	annulus	0 z a R   	.		
	
	
Definition:	The	residue	of	f(z)	at	the	point	a 		is	defined	as	
	

	 Coefficient	of	
1

z a
=	 1d =

1
( )

2
C

f w dw
i  	

	
where,	 C 	 	 is	 any	 simple,	 closed,	 p.w.	 smooth	 curve	 lying	 in	
0 z a R   	and	enclosing	the	point	a .	
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Cauchy	Residue	Theorem.		
	
Let	a	function	f(z)	be	analytic	inside	and	on	a	simple,	closed,	p.w.	
smooth	 curve	C 	 ,	 except	 for	having	 finitely	 singularities	at	 the	
points	 1 2, ,..., nz z z 	enclosed	 in	C .	Let	 kp 	be	the	residue	of	f(z)	at	
the	point	 kz .	Then,	

	 	
1

( ) 2
n

k
kC

f w dw i p


  .	

	
Proof.	By	Cauchy	Theorem	for	Multiply	Connected	Domains,		
	

1 1

( ) ( ) 2

k

n n

k
k kC C

f w dw f w dw i p
 

     	

(the	last	equality	is	due	to	definition	of	residues).	
	
	
	
	
	
	
	
	

2C   
3C   

4C   

 5C   

  6C   

  1C   
3z  2z  

1z  

4z  

6z  

5z  

  C   
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Example.	Evaluate	
2

5 2
( 1)

z

z
dz

z z



 .	

Solution.		
15 2 2

( ) (5 )(1 )
( 1)
z

f z z
z z z


    


	

22
(5 )(1 ...)z z

z
     

2
3 3 ....z

z
    	

0

1
( ) 2

z
Coeff of res f z

z 
   .	

	

Further,
5 2 5( 1) 3

( )
( 1) ( 1)
z z

f z
z z z z

  
 

 
						

1

2

3 1 3
(5 )( ) (5 )(1 ( 1))

1 1 ( 1) 1

3
(5 )(1 ( 1) ( 1) ...)

1

z
z z z

z z
z

     
   

      


	

 	Coeff.	of	
1

1z 
=	3		

1
( ) 3

z
res f z


  	

2

5 2
2 (3 2) 10

( 1)
z

z
dz i i

z z
 




   

 .	(By	Cauchy	Residue	Theroem)	


