Lecture 13

Residue at ∞

Definition: Let C be a simple closed p.w. smooth curve enclosing all finite singularities of f. Orient C in **clockwise** direction. Then, residue of f at $z = \infty$ is defined as

$$\operatorname{res}_{z=\infty} f(z) = \frac{1}{2\pi i} \oint_C f(z) dz.$$

Proposition. The residue of f(z) at $z = \infty$ is negative of coefficient of z in the Laurent's expansion of $f(\frac{1}{z})$ in 0 < |z| < d, where d is so small that 0 < |z| < d does not contain any singularity of $f(\frac{1}{z})$.

Proof. Let C_R be a circle of sufficiently large radius R, enclosing all finite singularities of f(z) such that $C_{1/R}$ does not contain any singularity of f(1/z) except at z = 0 and $\frac{1}{R} < d$. By definition,

$$\operatorname{res}_{z=\infty} f(z) = \frac{1}{2\pi i} \oint_{C_R} f(w) dw$$
$$= \frac{1}{(putting w=1/z)} - \frac{1}{2\pi i} \oint_{C_{1/R}} \frac{f(\frac{1}{z})}{z^2} dz ,$$
$$\int_{C_{1/R}} f(z) = \frac{1}{2\pi i} \int_{C_{1/R}} \frac{f(\frac{1}{z})}{z^2} dz ,$$

 $(C_{1/R}$ being counterclockwise oriented circle of radius 1/R)

= - coefficient of z in the Laurent's expansion of f(1/z)in $0 < |z| < \frac{1}{R}$. **Example:** Consider the function $f(z) = \frac{1}{z} + z^n$. It has a pole of order 1 at z = 0 and a pole of order n at $z = \infty$. Res f(z) = 1 and by the above proposition Res f(z) = -1.

Proposition. If a function f(z) is analytic inside and on a simple, closed, p.w. smooth curve C, except for having finitely singularities at the points $z_1, z_2, ..., z_n$ enclosed in C and a singularity at $z = \infty$. Then,

$$\sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z) + \operatorname{res}_{z=\infty} f(z) = 0.$$

Proof. Follows by using Cauchy Residue Theorem and the definition of residue at ∞ .

1.f(z) has a simple pole at z = a. In this case the Laurent's expansion of f(z) is

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \frac{d_1}{z-a}$$

Therefore,

$$\operatorname{res}_{z=a} f(z) = d_1 = \lim_{z \to a} (z-a) f(z)$$

If $f(z) = \frac{g(z)}{h(z)}$, where h(z) has a simple zero at z = a and $g(a) \neq 0$, then f(z) has a simple pole at z = a. In this case,

$$d_1 = \lim_{z \to a} (z - a) \frac{g(z)}{h(z)} = \lim_{z \to a} \frac{(z - a)g(z)}{h(z) - h(a)} = \frac{g(a)}{h'(a)}$$

If $f(z) = \frac{g(z)}{h(z)}$, where h(z) has a simple zero at z = a, $g(a) \neq 0$, then $d_1 = \frac{g(a)}{h'(a)}$

Example 1. $f(z) = \cot z$.

The function $f(z) = \cot z = \frac{\cos z}{\sin z}$ has simple poles at the points $z = n\pi \& \cos n\pi \neq 0$. Therefore,

$$\operatorname{res}_{z=n\pi} f(z) = \frac{\cos n\pi}{\cos n\pi} = 1.$$

(Note the difficulty in finding Laurent's expansion of cot z in deleted neighbourhood of the points $n\pi$)

Example2. $f(z) = \frac{z}{z^n - 1}$. Since the function $z^n - 1$ has simple zeros at the points $z_k = e^{\frac{2\pi i k}{n}}, k = 0, ..., n - 1$, the function $f(z) = \frac{z}{z^n - 1}$ has simple pole at these points. Therefore,

$$\operatorname{res}_{z=z_k} f(z) = \left(\frac{z}{nz^{n-1}}\right)_{z=z_k} = \frac{z_k}{nz_k^{n-1}} = \frac{z_k^2}{n} = \frac{1}{n}e^{\frac{4\pi i k}{n}}$$

f(z) has a pole of order m at z = a.

Denote $\varphi(z) = (z-a)^m f(z)$. Then, $\varphi(z)$ is analytic in some neighbourhood of the point a. Let, the Taylor series expansion of $\varphi(z)$ in this neighbourhood be

$$\varphi(z) = \varphi(a) + \varphi'(a)(z-a) + \dots + \frac{\varphi^{(m-1)}(a)}{(m-1)!}(z-a)^{m-1} + \dots$$

Therefore, the Laurent's expansion of f(z) in the deleted neighbourhood of a is

$$f(z) = \frac{\varphi(z)}{(z-a)^m} = \frac{\varphi^{(m-1)}(a)}{(m-1)!} \frac{1}{(z-a)} + \dots + \varphi(a) \frac{1}{(z-a)^m}$$
$$+ nonnegative powers of (z-a)$$

$$\Rightarrow d_1 = coefficient of \frac{1}{z-a} = \frac{\varphi^{(m-1)}(a)}{(m-1)!}$$
$$= \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]_{z=a}$$

Example 1. Find the residue of the function $f(z) = \frac{z^3 + 5}{z(z-1)^3}$ at z = 1.

Solution: The function f(z) has a pole of order 3 at z = 1. Therefore,

$$\begin{aligned} \operatorname{res}_{z=1} f(z) &= \frac{1}{2!} \left[\frac{d^2}{dz^2} \left(\frac{z^3 + 5}{z} \right) \right]_{z=1} \\ &= \frac{1}{2!} \left[\frac{d}{dz} \left(\frac{3z^2 \cdot z - (z^3 + 5)}{z^2} \right) \right]_{z=1} \\ &= \frac{1}{2!} \left[\frac{d}{dz} \left(\frac{2z^3 - 5}{z^2} \right) \right]_{z=1} \\ &= \frac{1}{2!} \left[\frac{6z \cdot z^2 - 2z(2z^3 - 5)}{z^4} \right]_{z=1} \\ &= \frac{1}{2!} \left[\frac{2z^3 + 10}{z^4} \right]_{z=1} = \frac{1}{2!} \times 12 = 6 \end{aligned}$$

Example 2. Find the residue of the function $f(z) = \frac{1}{(1+z^2)^n}$ at all its poles.

Solution. f(z) has poles of order n at z = i and z = -i. Therefore,

$$\operatorname{res}_{z=i} f(z) = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \left[\left(z - i \right)^n \frac{1}{\left(z^2 + 1 \right)^n} \right]_{z=i}$$

$$= \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \left[\frac{1}{(z+i)^n} \right]_{z=i}$$

= $\frac{1}{(n-1)!} \left[(-1)^{n-1} \frac{n(n+1)...(2n-2)}{(z+i)^{2n-1}} \right]_{z=i}$
= $\frac{(-1)^{n-1}}{(n-1)!} \frac{(2n-2)!}{(n-1)!} \frac{1}{(2i)^{2n-1}} = \frac{(2n-2)! \times (-1)^{n-1}}{[(n-1)!]^2 2^{2n-1}} \frac{1}{i} \frac{1}{(i)^{2n-2}}$
= $-i \frac{(2n-2)}{[(n-1)!]^2 2^{2n-1}}$

Evaluation of Real Integrals by Residue Method

(I) Integrals of the form $\int_{0}^{2\pi} R(\cos\theta,\sin\theta) d\theta$; R is rational

function of its arguments:

Let $z = e^{i\theta}$. Then, $d\theta = \frac{dz}{iz}$, $\cos \theta = \frac{1}{2}(z + \frac{1}{z})$, $\sin \theta = \frac{1}{2i}(z - \frac{1}{z})$. Therefore,

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) \, d\theta = \frac{1}{i} \int_{|z|=1} \frac{R(\frac{1}{2}(z+\frac{1}{z}), \frac{1}{2i}(z-\frac{1}{z}))}{z} \, dz$$
$$= \frac{1}{i} \int_{|z|=1} R^{*}(z) \, dz \quad (*)$$

where $R^*(z)$ is a rational function of z, analytic in |z| < 1, except for having finitely many poles N, at the points $z_k, k = 1, 2, ..., N$, where $N \le$ degree of the denominator of $R^*(z)$.

By (*),

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) \, d\theta = 2\pi \sum_{k=1}^{N} \operatorname{res}_{z=z_{k}} R^{*}(z).$$

It therefore follows that If α_k is the order of pole at z_k , then

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) \, d\theta = 2\pi \sum_{k=1}^{N} \frac{1}{(\alpha_k - 1)!} \lim_{z \to z_k} \frac{d^{\alpha_k - 1}}{dz^{\alpha_k - 1}} \Big[(z - z_k)^{\alpha_k} R^*(z) \Big].$$

Example. Evaluate
$$I = \int_{0}^{\pi} \frac{a}{a^2 + \sin^2 \varphi} \, d\varphi$$
, $a > 0$.

Solution.

$$I = \int_{0}^{\pi} \frac{2a}{1 + 2a^{2} - \cos 2\varphi} d\varphi = \int_{0}^{2\pi} \frac{a}{1 + 2a^{2} - \cos \theta} d\theta$$
$$= \int_{|z|=1}^{\pi} \frac{2ai}{z^{2} - 2z(1 + 2a^{2}) + 1} dz$$

The integrand has simple poles at the points $1+2a^2 \pm 2a\sqrt{1+a^2}$. The positive sign corresponds to a point outside |z|=1. The pole $A=1+2a^2-2a\sqrt{1+a^2}$ lies in |z|<1, and

$$res_{z=A} \frac{2ai}{z^2 - 2z(1 + 2a^2) + 1}$$

= $\lim_{z \to A} \frac{2ai(z - A)}{z^2 - 2z(1 + 2a^2) + 1} = \lim_{z \to A} \frac{2ai}{(z - 1 - 2a^2 - 2a\sqrt{1 + a^2})}$
= $\frac{1}{2i\sqrt{a^2 + 1}}$

Therefore,
$$I = 2\pi i \times \frac{1}{2i\sqrt{a^2 + 1}} = \frac{\pi}{\sqrt{a^2 + 1}}.$$