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Lecture	14	
	

(II)	Integrals	of	the	form	 ( )f x dx



 .	

The	integral	 ( )f x dx



 	is	defined	as	

	 ( ) lim ( ) lim ( )
c b

a b
a c

f x dx f x dx f x dx


 
 

    .	

	
If	 the	 limit	 on	 RHS	 does	 not	 exist,	 or	 gives	 an	 indeterminate	

form	  ,	 ( )f x dx



 	 does	 not	 exist.	 In	 this	 case,	we	 define	

Cauchy	Principle	Value	of	 ( )f x dx



 	as	

	 . . ( ) lim ( )
r

r
r

p v f x dx f x dx



 

  .	

Example.	For		f(x)	=	x,	the	integral	 ( )f x dx



 	does	not	exist	but	

	
2 2

. . lim lim ( ) 0
2 2

r

r r
r

r r
p v x dx x dx



 
 

     .	

Note	that	if	 ( )f x dx



 	exists,	 ( ) . . ( )f x dx p v f x dx

 

 

  .	



13 
 

Using	the	method	of	residues,	the	Principle	Value	of	above	type	
of	 real	 integrals	 can	 be	 found.	 We	 need	 the	 following	
Proposition	for	this	purpose:	
	
Proposition.	Let	
(i) f(z)	be	analytic	in	Im	z	>	0,	except	for	having	finitely	many	

singularities	in	Im	z	>	0	

(ii) 0 01
( ) , , , , 0.

M
f z for z R for some M R

z     	

Then,	 lim ( ) 0, : , Im 0

R

R
R

C

f w dw where C w R w


   .	

Remarks.		
	
(i)	The	conditions	of	the	proposition	are	satisfied	if	
	
(a)	 	f(z)	is	analytic	in	some	neighbourhood	of	 z   	(i.e.	outside	
of	some	disk	centered	at	origin)	and,	at	 z   ,	f(z)	has	a	zero	of	
order	 2 .		
	
For,	 in	 this	 case,	 Laurent’s	 expansion	 of	 f(z)	 in	 the	
neighbourhood	of			z	=	 ,	is	of	the	form	
	

		 32
02 3 2

( )
( ) ... , ( )

dd z
f z where z M for z R

z z z

       	

	

the	 conditions	 of	 the	 proposition	 02
( )

M
f z for z R

z
  	 is	

satisfied	 if	 f(z)	 has	 a	 zero	 of	 order	 2 	 at	 z   .
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(b)	
( )

( )
( )

P z
f z

Q z
 	,	 ( ), ( )P z Q z 	polynomials,	and	

		 degree	of	denominator	–	degree	of	numerator	 2 .	
	
In	this	case,	 ( )f z has	a	zero	of	order	 2 	at	 z   ,	so	that	by	(i),	
the	conditions	of	the	proposition	are	satisfied	
	
	
Proof	of	the	Proposition.	For	 0R R ,	

		
1

( ) ( ) . 0

R RC C

M M
f w dw f w dw R as R

R R 
      .	
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Theorem.	Let	
	
(i) f(z)	 be	 analytic	 in	 Im 0z  	 except	 for	 having	 finitely	many	

singular	points	 , 1,2,..., Im 0kz k N in z  	

(ii) 0 01
( ) , , , 0

M
f z for z R for some R M

z     	

Then,	 . . ( )p v f x dx



 	exists	and	

	  
1

. . ( ) 2 ( )
k

n

z zk

p v f x dx i res f z




  .	

	
Proof.		Let	 0 1,...,kz R for k N  .	For	 0R R ,	let	
	
	 	    : : , 0 : , Im 0R z x iy R x R y z z R z          	
	
By	Cauchy	Residue	Theorem,	

	 	  
1

( ) ( ) ( ) 2 ( )
k

R R

R N

z zkR C

f z dz f x dx f z dz i res f z
 

      	

where,	 RC 	 is	 the	 counterclockwise	 oriented	 semicircle	

 : , Im 0z z R z  .	
Using	 the	 proposition,	 it	 follows	 that	 the	 limit	 of	 second	
integral	on	LHS	is	0	as	R  .	

	 	  
1

. . ( ) 2 ( )
k

N

z zk

p v f x dx i res f z




   	
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Example.	Evaluate	
4

1

1
dx

x



  	

Solution.	 	 Since	 the	 above	 integral	 exists,	

4 4

1 1
. .

1 1
dx p v dx

x x

 

 


   .	Let		

f(z)	 =	
4

1

1z 
.	 It	 has	 singular	 points	 at	

2
1/4 4( 1) , 0,1,2,3.

ik i

kz e k
 

    	Therefore,	

	 	 /4 3 /4 5 /4 3 /4 7 /4 4
0 1 2 3, , ,

i
i i i i iz e z e z e e z e e


           .	

Only	 0 1z and z 	lie	in	 Im 0z  	and	the	conditions	of	the	previous	
theorem	are	satisfied.	

/4 3 /4

/4 3 /4

4 4

3 3

1 1
2

1 1

1 1
2

4 4

i i

i i

z e z e

e e

I i res res
z z

i
z z

 

 





 

      
             

	

										
/4 2 /4

3 /4 9 /4

2 1 1
.

4 2
i i i

i i

i i
e e e

e e
  

 
             

/4 /4 2
2 sin

2 4 4 2
i ii i

e e i                
.	

Note.	 If	 f(x)	 is	 an	 even	 function,	 then	
0

( )f x dx


 	 can	 also	 be	

evaluated	by	this	method.	
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	(III)	Integrals	of	the	form	 ( )i xe f x dx



 , 0  		

	(Fourier	Integrals)	
	
We	need	the	following	result:	
	
Jordan’s	Lemma:	Let,	
	
(i)	 ( )f z 	 be	 analytic	 in	 Im 0z  	 except	 for	 having	 finitely	

many	singular	poits	
	
(ii)	  ( ) 0 : 0 argf z uniformly as z in z z     .	
	
Then,	 for	 0  ,	 lim ( ) 0

R

i w

R
C

e f w dw


 ,	 where	 RC 	 is	 the	

semicircle	 , Im 0z R z  .	
	
Proof.	We	use	the	Jordan’s	inequality	
	

	 		
2 sin

1, 0 / 2for
  

 
    	

	
(Proof	of	 Jordan’s	 inequality:	we	 first	 show	that	 if	 f(t)	 is	 	 as	

t ,	 then
0

1
( ) ( )

t

F t f x dx
t

  	 0t  ,	 is	 also	 decreasing	 with	 t .	

Obviously,	 ( ) ( )F t f t for all t .	Therefore,		
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2
0

1 ( ) ( ) ( )
( ) ( ) 0

t
f t F t f t

F t f x dx
t t tt

        	 ( )F t as t   .		

	
Applying	this	result	 to	 cos 0 / 2in    	 (since	 cos 	 is	 	 in	
this	interval),	it	follows	that	
	

0

1 sin
cos 0

2
x dx is in

  
 

   
2 sin

1


 
   )	

	
Now,	by	hypothesis,		
	

( ) ( ) , ( ) 0Rf z R on C where R as R    .	

sin

0 0

/2
sin

( ( ) ( ))
0

( )

2

R

i w i w R
R R

C

R
R

using f f

e f w dw R e d R e d

R e d

 
   


 

  

   

 





 

 



  



	

2/2 .

( ' )
0

( ) 2

(1 ) 0

R

Ri w
R

using Jordan s inequality
C

R
R

e f w dw R e d

e as R

  



 

 






 

   

 
.	
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Theorem.	 Let	 f(z)	 be	 analytic	 in	 Im 0z  	 except	 for	 having	
finitely	 many	 singularities	 in	 Im 0z  .	 Let	 f(z)	 satisfy	 the	
conditions	 of	 Jordan’s	 Lemma.	 Then,	 the	 integral	

. . ( ) , 0,i xp v e f x dx 




 	exists	and	is	given	by	

	 	 	
1

. . ( ) 2 ( )
k

n
i x i z

z zk

p v e f x dx i res e f z 




    	

where	 kz 	are	the	singularities	of		f(z)	in	the	upper	half	plane.	
	
Proof.	 	 Let	 0R 	 be	 such	 that	 0kz R 	 for	 all	 k	 =	 1,2,…,	 N.	 By	
Cauchy	Residue	Theorem,		

	 	
1

( ) ( ) 2 ( )
k

R

R n
i x i w i z

z zkR C

e f x dx e f w dw i res e f z  


      .	

Taking	 limit	 R  	 and	 using	 Jordan’s	 Lemma,	 the	 Theorem	
follows.	
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Example	1.	Evaluate	
2 2

cos
; 0, 0

x
I dx a

x a

 




  
 .	

Solution.	 12 2
Re Re ( )

i xe
I dx I say

x a





 
 .		

The	 function	
2 2

1
( ) 0f z as z

z a
  


in	 the	 upper	 half	

plane	 and	 it	 has	 a	 pole	 of	 order	 1 at z ia 	 in	 the	 upper	 half	
plane.	
	

1 2 2

1
2 ( ) 2

2 .
2

i z i z

z ia z ia

a
a

I i res e f z i res e
z a

e
i e

ia a

 




 



 




        

 

	

1Re aI I e
a

    .	
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Example	2.	Evaluate	  2 2
; 0, 0

( )

i xe
I dx a

x a x ia








  
  .	

Solution.	 The	 function	  2 2

1
( ) 0

( )
f z as z

z a z ia
  

 
in	

the	upper	half	plane	and	it	has	a	pole	of	order	 2 at z ia 	in	the	
upper	half	plane.	
	

 2 2
2 2 ( )

( )

i z i z

z ia
z ia

e d e
I i res i

dz z iaz a z ia

 
 




   
          

	

						
   

2 22 2

2 2 2

( ) 2 1 1 2

42

i z i z
a a

z ia

i e z ia e a a
e e

az ia ia

   



       
     

      
.	

	
(Note	that	the	point	z	=	‐ia	is	in	the	lower	half	plane,	so	residue	
at	 this	 point	 need	 not	 be	 computed	 for	 the	 evaluation	 of	 the	
integral)		
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Remarks.	
	
(i) If	f(x)	is	even,		

	 	
0

1 1
( )cos ( )cos Re ( )

2 2
i xf x x dx f x x dx f x e dx 

  

 

    	

	 																																		

1 1

1
Re 2 ( ) Im ( )

2 k k

N N
i z i z

z z z zk k

i res f z e res f z e  
  

           
  .	

	
(ii) If	f(x)	is	odd,	

	 	
0

1 1
( )sin ( )sin Im ( )

2 2
i xf x x dx f x x dx f x e dx 

  

 

    	

	 																																		

1 1

1
Im 2 ( ) Re ( )

2 k k

N N
i z i z

z z z zk k

i res f z e res f z e  
  

          
  .
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(IV)	Fourier	Integrals	having	Singularities	at	Real	Axis	
	
We	 illustrate	 this	 case	 by	 considering	 the	 evaluation	 of	 the	

integral		
0

sin
, 0

x
I dx

x
 



  .	

Note	that	
1 sin
2

x
I dx

x




 
1

Im
2

i xe
dx

x





  .	

	
Let	contour	of	integration	be	as	shown	in	the	figure	and	
	

   , , , ,R RR C R C where R            	

	

Then,	by	Cauchy	Theorem,
,

0

R

i ze
dz

z






 	

	
	

[ , ] [ , ]

0

R

i x i x i w i w

R R CC

e e e e
dx dx dw dw

x x w w


   

  

        .	(*)	

	
The	last	integral	tends	to	0	as	R (by	Jordan’s	Lemma).	
	
	
	

-R    R 

C  

RC  



24 
 

Further,	
0

(cos sin )

( )i

i w
i i

putting w e
C

e
dw i e d

w 




  

 







  .		

	
Since	 the	 integrand	 is	 continuous	 function	of	  	 in	 the	 interval	
[0, ] ,		the	above	identity	gives	
	

0

lim
i w

C

e
dw i d i

w







 


    .		

	

Therefore,	by	(*),	
0

sin
. .

2

i xe x
p v dx i dx

x x

  
 



    	.	


