Lecture 15

Counting Number of Zeros and Poles of a Function in a Given Simple Closed Curve.

Proposition. Let f be analytic inside and on a simple, closed, p.w. smooth and counterclockwise oriented curve C, except possibly for having finitely many poles inside C. Let f have no zeros on C. Then,

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=N_{0}-N_{\infty}
$$

where,
$N_{0}=$ Number of zeros of f inside C (Counted according to their multiplicity)
$N_{\infty}=$ Number of poles of f inside C (Counted according to their multiplicity).

Proof. Let the point a be zero of order n of the function f. Then,

$$
f(z)=(z-a)^{n} f_{1}(z), f_{1}(z) \neq 0 \text { in a neighbourhood of a }
$$

$\Rightarrow f^{\prime}(z)=n(z-a)^{n-a}+(z-a)^{n} f_{1}^{\prime}(z)$
$\Rightarrow \frac{f^{\prime}(z)}{f(z)}=\frac{n}{z-a}+\frac{f_{1}^{\prime}(z)}{f_{1}(z)}=\frac{n}{z-a}+\sum_{n=0}^{\infty} c_{n}(z-a)^{n}, \quad$ in \quad a deleted neighbourhood of a.
$\Rightarrow a$ is a pole of f and $\underset{z=a}{\operatorname{res}} \frac{f^{\prime}(z)}{f(z)}=n$.

Similarly, let the point b be a pole of order m of the function f. Then,

$$
\begin{aligned}
f(z) & =\frac{b_{1}}{(z-b)^{m}}+\ldots+\frac{b_{m}}{(z-b)}+b_{m+1}+b_{m+2}(z-b)+\ldots,, \text { where } b_{1} \neq 0 \\
& =\frac{f_{2}(z)}{(z-b)^{m}}
\end{aligned}
$$

where, $f_{2}(z)$ is analytic at b and $f_{2}(b)=b_{1} \neq 0 \Rightarrow f_{2}(z) \neq 0 \quad$ in some neighbourhood of b.
$\Rightarrow \frac{f^{\prime}(z)}{f(z)}=-\frac{m}{z-b}+\frac{f_{2}^{\prime}(z)}{f_{2}(z)}=-\frac{m}{z-b}+\sum_{n=0}^{\infty} c_{n}^{*}(z-b)^{n}$, in a deleted neighbourhood of b
$\Rightarrow b$ is a pole of f and $\underset{z=b}{\operatorname{res}} \frac{f^{\prime}(z)}{f(z)}=-m$.

Thus, the singularities of $\frac{f^{\prime}(z)}{f(z)}$ inside C are zeros and poles of f, with residues at them respectively equal to their multiplicities or negative of their multiplicities.

Now, let $a_{1}, \ldots, a_{m_{k}}$ be the zeros of f with multiplicities $m_{1}, \ldots, m_{k}, m_{1}+\ldots+m_{k}=N_{0}$ and $b_{1}, \ldots, b_{n_{l}}$ be the poles of f with multiplicities $n_{1}, \ldots, n_{l}, n_{1}+\ldots+n_{l}=N_{\infty}$. Using the above arguments, it follows that sum of residues of $\frac{f^{\prime}(z)}{f(z)}$ at zeros and poles of f is $N_{0}-N_{\infty}$.

Therefore, by Cauchy Residue Theorem,
$\frac{1}{2 \pi i} \oint \frac{f^{\prime}(z)}{f(z)} d z=N_{0}-N_{\infty}$.

Argument Principle.

Let f be analytic inside and on a simple, closed, p.w. smooth counterclockwise oriented curve C, except for having finitely many poles inside C. Let f have no zeros on C. Then,

$$
\frac{1}{2 \pi} \Delta_{C}[\arg f(z)]=N_{0}-N_{\infty}
$$

where,
$N_{0}=$ Number of zeros of f inside C (Counted according to their multiplicity)
$N_{\infty}=$ Number of poles of f inside C (Counted according to their multiplicity)
and
$\Delta_{C}[\arg f(z)]=$ Change in $\arg f(z)$ as z describes C once in counterclockwise direction

Remark: $\frac{1}{2 \pi} \Delta_{C}[\arg f(z)]$ is winding number of the image curve $\Gamma=f(C)$ around origin. Therefore, Argument Principle relates winding number of the image curve $\Gamma=f(C)$ around origin with the number of zeros and poles of the function $f(z)$

Proof. Let $z=z(t), a \leq t \leq b$ be the parametric representation of C. Let $\Gamma=f(C)$. Then, a parametric representation of Γ is $w(t)=$ $f(z(t)), a \leq t \leq b$.

Since, $w^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t), a \leq t \leq b$,
$\oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=\int_{a}^{b} \frac{f^{\prime}(z(t))}{f(z(t))} z^{\prime}(t) d t=\int_{a}^{b} \frac{w^{\prime}(t)}{w(t)} d t=\oint_{\Gamma} \frac{d w}{w}$

Now, consider another parametric representation of Γ given by

$$
w(\tau)=\rho(\tau) e^{i \varphi(\tau)}, c \leq \tau \leq d
$$

Obviously, $\varphi(d)-\varphi(c)=$ Change in the argument of w as it describes Γ once in anticlockwise direction
$=$ Change in the argument of $w=f(z)$ as z describes C once

$$
=\Delta_{C}[\arg f(z)]
$$

Since $w^{\prime}(\tau)=\rho^{\prime}(\tau) e^{i \varphi(\tau)}+i \rho(\tau) e^{i \varphi(\tau)} \varphi^{\prime}(\tau)$
$\Rightarrow \frac{w^{\prime}(\tau)}{w(\tau)}=\frac{\rho^{\prime}(\tau)}{\rho(\tau)}+i \varphi^{\prime}(\tau)$ it follows that
$\oint_{\Gamma} \frac{d w}{w}=\oint_{\Gamma}\left[\frac{\rho^{\prime}(\tau)}{\rho(\tau)}+i \varphi^{\prime}(\tau)\right] d \tau=[\log \rho(\tau)]_{C}^{d}+i[\varphi(\tau)]_{c}^{d}$
$=i[\varphi(d)-\varphi(c)]=i \Delta_{C}[\arg f(z)]$.
(1) and (2) imply
$\oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=i \Delta_{C}[\arg f(z)]$
Since, by previous proposition,
$\oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i\left(N_{0}-N_{\infty}\right)$,
the desired equation $\frac{1}{2 \pi} \Delta_{C}[\arg f(z)]=N_{0}-N_{\infty}$ of Argument Principle follows by (*).

Geometrical Interpretation of Argument Principle

Since,

$$
\begin{aligned}
\Delta_{C}[\arg f(z)] & =\varphi(d)-\varphi(c) \\
& =2 \pi \times \text { winding number of } \Gamma \text { around origin }
\end{aligned}
$$

\Rightarrow Winding number of the curve $\Gamma=f(C)$ around origin

$$
=N_{0}-N_{\infty} .
$$

Notes.
(1) Let f be analytic inside and on C. Then,
(a) f has m zeros inside C iff $\Gamma=f(C)$ winds m times around origin

Example. Let $f(z)=z^{2}$. Then, $f(z)$ has 2 zeros in a simple closed curve C enclosing origin. It follows that $\Gamma=f(C)$ winds 2-times around the origin.

(b) f has no zeros inside C iff $\Gamma=f(C)$ does not wind around origin

Example. Let $f(z)$ have no zeros in a simple closed curve C enclosing origin. It follows that $\Gamma=f(C)$ does not wind around origin.

(2) Letf be nonzero inside C. Then,
(a)f has no poles inside C iff $\Gamma=f(C)$ does not wind around origin
(b)f has n poles inside C iff $\Gamma=f(C)$ winds n times around origin.

Example. $f(z)=\frac{1}{z^{2}}, C:|z|=1$

Rouche's Theorem

Let f and g be analytic inside and on a simple, closed, p.w. smooth curve C. If $|f(z)|>|g(z)|$ for all points z on C, then $f(z)$ and $f(z)+g(z)$ have same number of zeros inside C. It is assumed that C is oriented in anticlockwise direction.

Proof. Observe that
(i) f has no zeros on $C(\because$ for $z \in C,|f(z)|>|g(z)| \geq 0)$
(ii) $f+g$ has no zeros on C

$$
(\because \text { for } z \in C,|f(z)+g(z)| \geq|f(z)|-|g(z)|>0)
$$

Let $N_{f}=$ Number of zeros of f inside C

$$
N_{f+g}=\text { Number of zeros of } f+g \text { inside } C .
$$

By Argument Principle, since f and $f+g$ have no poles inside C,
(1) $\left\{\begin{array}{c}\frac{1}{2 \pi} \Delta_{C}[\arg f(z)]=N_{f} \\ \frac{1}{2 \pi} \Delta_{C}[\arg (f(z)+g(z))]=N_{f+g}\end{array}\right.$

Now,
(2) $\Delta_{C} \arg [f(z)+g(z)]=\Delta_{C} \arg \left[\left(1+\frac{g(z)}{f(z)}\right) f(z)\right]$

$$
=\Delta_{C} \arg \left[\left(1+\frac{g(z)}{f(z)}\right)\right]+\Delta_{C} \arg [f(z)]
$$

Let $w=1+\frac{g(z)}{f(z)}$ maps C on to Γ. Then, Γ lies inside the circle
$|w-1|=1$ (since, for any point $w \in \Gamma,|w-1|=\left|1+\frac{g(z)}{f(z)}-1\right|<1$).
$\Rightarrow \Gamma$ does not wind around origin
$\Rightarrow \Delta_{C} \arg \left[1+\frac{g(z)}{f(z)}\right]=0$.
$\underset{\text { (by (1) and (2)) }}{\Rightarrow} N_{f}=N_{f+g}$

Thus, f and $f+g$ have the same number of zeros inside C.

Example. Find the number of zeros of $P(z)=z^{10}-6 z^{7}+3 z^{3}+1$ in $|z|<1$.

Solution. Let $f(z)=-6 z^{7}$ and $g(z)=z^{10}+3 z^{3}+1$. Then, on $|z|=1$,

$$
|g(z)|<5 \text { and }|f(z)|=6
$$

Therefore, the conditions of Rouche's Theorem are satisfied. Since $f(z)$ has 7 zeros in $|z|<1, f(z)+g(z)=P(z)$ also have 7 zeros in $|z|<1$.

Exercise. Find the number of zeros of $P(z)=z^{7}+4 z^{6}-15 z^{5}+7 z^{3}+2$ in $1<|z|<2$.

Hint.
On $|z|=1,\left|z^{7}+4 z^{6}+7 z^{3}+2\right|<14<\left|-15 z^{5}\right|=15$
$\Rightarrow P$ has 5 zeros in $|z|<1$
and
On $|z|=2,\left|z^{7}+4 z^{6}+7 z^{3}+2\right|<442<\left|-15 z^{5}\right|=482$
$\Rightarrow P$ has 5 zeros in $|z|<2$.

Therefore $P(z)$ has no zeros in $1<|z|<2$.

Exercise. Show that $P(z)=z^{5}+2 z^{3}+2 z+3$ has exactly one root in first quadrant.

Solution.

$\Delta_{[0, R]}(\arg P(z))=0$
$\Delta_{K_{R}}(\arg P(z))=\Delta_{K_{R}}\left[\arg \left(R^{5} e^{5 i \vartheta}+2 R^{2} e^{2 i \vartheta}+2 R e^{i \vartheta}+3\right)\right]$

$$
=\Delta_{K_{R}}[5 \vartheta]=\frac{5 \pi}{2}
$$

$\Delta_{[i R, 0]}[\arg P(z)]=0-\frac{\pi}{2}=-\frac{\pi}{2}$.
Therefore, $\frac{1}{2 \pi} \Delta_{C_{R}}[\arg P(z)]=1$, where $C_{R}=[0, R] \cup K_{R} \cup[i R, 0]$.

