Lecture 15

Counting Number of Zeros and Poles of a Function in a Given
Simple Closed Curve.

Proposition. Let f be analytic inside and on a simple, closed, p.w.
smooth and counterclockwise oriented curve C, except possibly
for having finitely many poles inside C. Let f have no zeros on C.
Then,

1 ¢ f'(2)
dz=N,—N
Zﬂiggf(z) 0

where,

Ny = Number of zeros of f inside C (Counted according to their

multiplicity)
N_ = Number of poles of f inside C (Counted according to

their multiplicity).
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Proof. Let the point a be zero of order n of the function f.
Then,

f(z)=(z-a)" f,(z), f,(z)=0in a neighbourhood of a

= f'(z)=n(z-a)" +(z-a)" f, (2)

f(z) n f(z) n 0 ) _
f(z) 7—a f.(2) Z—a+r§)cn(z_a)’ in a deleted

neighbourhood of a.

—alisa poleof f and res ')
z=a f(Z)

=N.

Similarly, let the point b be a pole of order m of the function f.
Then,

f(z)= by S D
(z—b)" (z-b)
_ [(2)
(z—b)"
where, f,(z) is analyticat band f,(b)=b,#0 = f,(z)#0 in
some neighbourhood of b .

+b,,+Db,.0(z2=D)+...,,where b, #0

f'(2) m f2 (z) m
=— — c,(z—b
@) z=b f,(2)  z-b r;) (20,
neighbourhood of b

in a deleted

= bisa poleof f and resf (Z)z—m.
z=b f(Z)
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f'(z)
f(z)
poles of f, with residues at them respectively equal to their
multiplicities or negative of their multiplicities.

Thus, the singularities of inside C are zeros and

Now, let 8y, 8y be the zeros of f with multiplicities
my,...M, M +..+m =Ny and b;,...,b, be the poles of f with

multiplicities  ny,...,n;, Ny +...+n =N Using the above

f'(2)

f(2)

0"

arguments, it follows that sum of residues of at zeros

and poles of f is Ny —N_,.

Therefore, by Cauchy Residue Theorem,

1 ¢ f'(2)
dz=N,—N._.
Zﬂiqgf(z) o




Argument Principle.

Let f be analytic inside and on a simple, closed, p.w. smooth
counterclockwise oriented curve C , except for having finitely
many poles inside C. Let f have no zeros on C. Then,

L Aclarg f@]=Ng-N,
27
where,

N, = Number of zeros of f inside C (Counted according to their
multiplicity)

N_ = Number of poles of f inside C (Counted according to
their multiplicity)

and

Ac[arg f(z)]= Change in arg f(z) as z describes C once in
counterclockwise direction

Remark: ZLAC [arg f(z)] is winding number of the image
T

curve I' = f (C) around origin. Therefore, Argument Principle
relates winding number of the image curve I'= f(C) around
origin with the number of zeros and poles of the function f(z)
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Proof. Let z=12(t), a<t<bbe the parametric representation of

C.Let I'= f(C). Then, a parametric representation of I'is w(t) =
flz(t)), a<t<b.

Since, W'(t) = f'(2(t))Z'(t), a<t<b,

) 4y 8 1) iy g WO 4 W (g
i ® jf(z(» Ottty @

Now, consider another parametric representation of I' given
by
w(z) = p()e'??) | c<r<d.
Obviously,
¢(d) —¢@(c) =Change in the argument of w as it describes
['once in anticlockwise direction

= Change in the argument of w = f(z) as z describes
C once

= Aclarg 1(2)].

Since W' (1) = p/ (7)€" +ip(r)e" D/ (1)

/ /
W () _ () +i ¢'(7) it follows that

w(r)  p(7)
9§dw SE[Z((:) +i /()] dr=[log p(2)]¢ +i[e(2)]
r

= |[¢(d) p(C)]=1Acarg T(2)]. (2)



(1) and (2) imply

oz —inclarg £ (2)] )

Since, by previous proposition,

F'(2) 5 i
g&f(z)dz_Zm(No N_),

the desired equation ZLAC [arg f (z)]=Ny—N_of Argument
T

Principle follows by (*).



Geometrical Interpretation of Argument Principle

Since,

Aclarg T(z)]=o(d)—g(c)
= 27z x winding number of I" around origin

= Winding number of the curvel” = f (C) around origin
= NO — Noo'

Notes.
(1) Let fbe analytic inside and on C. Then,

(a) f has m zeros inside C iff T'= f(C) winds m times around
origin

Example. Let f(z) = z2. Then, f(z) hasZzeros in a simple closed
curve C enclosing origin. It follows that T = f(C) winds

2-times around the origin.

b apsan)
SRS =
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(b) f has no zeros inside C iff T' = f(C) does not wind around
origin

Example. Let f(z) have no zeros in a simple closed curve C
enclosing origin. It follows that I'= f(C) does not wind

around origin.

Yy

L//J\/Lw




(2) Let f be nonzero inside C. Then,

(a)f has no poles inside C iff I'= f(C) does not wind around
origin

(b)f has n poles inside C iff I'=f(C) winds n times around
origin.

Example. f(z) = iz C:lz|=1
Z
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Rouche’s Theorem

Let f and g be analytic inside and on a simple, closed,
p.w. smooth curve C. If | f(z)|>|g(z)| for all points z on C, then

f(z) and f(z) + g(z) have same number of zeros inside C. It is
assumed that C is oriented in anticlockwise direction.

Proof. Observe that

(i) f hasnozeroson C (.- for zeC,

(ii) f+ g hasno zeroson C
(- for zeC, |f(2)+9(2)| 2| (2)|-|g9(z)|>0).

f(z)|>|g9(z)/=0)

Let N; = Number of zeros of f inside C
N,y = Number of zeros of f +g inside C.

By Argument Principle, since f and f + g have no poles
inside C,

- Aclarg F(2)]= N,
)

%Ac l[arg(f (z) +9(z))]=N f+g
T

"
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Now,

() Acarg[f(2)+9(2)] = Ac arg[(L+ gi ))) f (2)]

— Acarg[(L+ gi i)]wc arg[ f (2)]

Let w :1+£ maps C on to I'. Then, I' lies inside the circle
f(z)
w-1/=1 (since, for any point we T, % ~-1<1).
Z
— I' does not wind around origin
= Acarg[l+ 9(z )] 0.
f(2)

— N: =N
by @and (2)) 19

Thus, f and f + g have the same number of zeros inside C.
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Example. Find the number of zeros of P(z) = z*° -6z’ +3z° +1 in

Z/<l

Solution. Let f(z)=-6z" and g(z)=7"°+3z°+1. Then, on

Z|=1,
g(z)|<5 and [f(z)|=6

Therefore, the conditions of Rouche’s Theorem are satisfied.
Since f{z) has 7 zeros in |z|<1, f{z) + g(z) = P(z) also have 7

zeros in |z/<1.

Exercise. Find the number of
P(z)=2"+42°-152°+7z° +2 in 1<|7| < 2.

Hint.
On z|=1,

2" +47% 4778 +2\ <14 < ‘—1525‘ ~15

= P has 5 zeros in |z|<1

and

On|z|=2,

2 +472° 1728+ 2\ <442 < ‘—1525‘ — 482

— P has 5 zeros in |z < 2.

Therefore P(z) has no zeros in 1<|z|< 2.

Zeros

of
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Exercise. Show that P(z) = z° + 22° + 2z + 3has exactly one root
in first quadrant.

Solution. {,\\

Apory(argP(z)) =0
A, (argP(2)) = A [arg(R%e” + 2R + 2Re"” + 3)]

Y/4

Afir,ojlargP(z)]=0 —% = —%-

Therefore, ZLACR [arg P(z)] =1, where C; =[0,R]uU Ky U[IR,0].
T



