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Lecture	15	
	
Counting	Number	of	Zeros	and	Poles	of	a	Function	in	a	Given	
Simple	Closed	Curve.	
	
Proposition.	Let	f	be	analytic	inside	and	on	a	simple,	closed,	p.w.	
smooth	and	counterclockwise	oriented	curve	C ,	except	possibly	
for	having	finitely	many	poles	inside	C .	Let	f	have	no	zeros	on	C .	
Then,	

	 	 0
1 ( )

2 ( )
C

f z
dz N N

i f z 


  	 	

where,		
	

0N Number of zeros of f inside	C	(Counted	according	to	their	
multiplicity)	
N Number of poles of f inside C  (Counted	 according	 to	
their	multiplicity).	
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Proof.	 	 Let	 the	point	 a 	be	zero	of	 	order	n	of	 the	 function	 	 f	 .	
Then,	
	 1 1( ) ( ) ( ), ( ) 0nf z z a f z f z in a neighbourhood of a   	
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( )z a

f z
a is a pole of f and res n

f z


  .	 	

	
Similarly,	let	the	point	b 		be	a	pole	of	order	m	of	the	function	f.	
Then,		
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2 2 1, ( ) ( ) 0where f z is analytic at b and f b b  	 2 ( ) 0f z  	 in	
some	neighbourhood	of	b 	.	
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   .	
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Thus,	 the	 singularities	 of	
( )

( )

f z

f z


	 inside	 C 	 	 are	 zeros	 and							

poles	 of	 	 f,	 with	 residues	 at	 them	 respectively	 equal	 to	 their	
multiplicities	or	negative	of	their	multiplicities.	
	
Now,	 let	 1,...,

kma a 	 be	 the	 zeros	 of	 f	 	 with	 multiplicities	

1 1 0,..., , ...k km m m m N   	and	 	 1,...,
lnb b 	be	the	poles	of	 f	 	with	

multiplicities	 1 1,..., , ...l ln n n n N   .	 Using	 the	 above	

arguments,	 it	 follows	 that	 sum	 of	 residues	 of	
( )

( )

f z

f z


	 	 at	 zeros	

and	poles	of	 f 	is	 0N N .		
	
Therefore,	by	Cauchy	Residue	Theorem,	
	 	

0
1 ( )

2 ( )
C

f z
dz N N

i f z 


  .																										
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Argument	Principle.		
	
Let	 f	 be	 analytic	 inside	 and	 on	 a	 simple,	 closed,	 p.w.	 smooth	
counterclockwise	 oriented	 curve	 C 	 ,	 except	 for	 having	 finitely	
many	poles	inside	C .	Let	f	have	no	zeros	on	C .	Then,	

	 0
1

[arg ( )]
2 C f z N N
    			

where,		
	

0N Number of zeros of f inside	C 	(Counted	according	to	their	
multiplicity)	
	
N Number of poles of f inside C  (Counted	 according	 to	
their	multiplicity)	
	
and		
	

[arg ( )]C f z =	 Change	 in	 arg ( )f z 	 as	 z	 describes	 C 	 once	 in	
counterclockwise	direction		
	

Remark:	
1

[arg ( )]
2 C f z

 	 	 is	 	winding	number	of	 the	 image	

curve	 ( )f C  	around	origin.	Therefore,	Argument	Principle	
relates	winding	 number	 of	 the	 image	 curve	 ( )f C  	 around	
origin	with	the	number	of	zeros	and	poles	of	the	function	 ( )f z 	
.	
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Proof.		Let	 ( ),z z t a t b   be	the	parametric	representation	of	
C .	Let	=	f(C ).	Then,	a	parametric	representation	of	 is	w(t)	=	
f(z(t)),	a t b  .		
	
Since,	 ( ) ( ( )) ( ),w t f z t z t a t b     ,	
	

( ) ( ( )) ( )
( )

( ) ( ( )) ( )

b b

C a a

f z f z t w t dw
dz z t dt dt

f z f z t w t w


  
       		(1)	

	
Now,	 consider	 another	 parametric	 representation	 of	  	 given	
by	
	 ( )( ) ( ) ,iw e c d       .	
Obviously,		

( ) ( )d c  Change	in	the	argument	of	w	as	it	describes	
once	in	anticlockwise	direction	

	 															=	Change	in	the	argument	of	w	=	f(z)	as	z	describes	
C	once	

	 															=	 [arg ( )]C f z .	
	
Since	 ( ) ( )( ) ( ) ( ) ( )i iw e i ej t j tt r t r t j t¢ ¢ ¢= + 		

( ) ( )
( )

( ) ( )

w
i

w

t r t
j t

t r t
¢ ¢

¢ = + 			it	follows	that	

( )
[ ( )]

( )

dw
i d

w

r t
j t t

r t
G G

¢
¢= +ò ò  [log ( )] [ ( )]d d

c ci     	

=	 [ ( ) ( )] [arg ( )]Ci d c i f z    .													 	 	 (2)	
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(1)	and	(2)	imply		
	

( )
[arg ( )]

( ) C
C

f z
dz i f z

f z


  																													(*)	

	
Since,	by	previous	proposition,		
	

0
( )

2 ( )
( )

C

f z
dz i N N

f z
 


  ,	

the	 desired	 equation	 0
1

[arg ( )]
2 C f z N N
    of	 Argument	

Principle	follows	by	(*).	
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Geometrical	Interpretation	of	Argument	Principle		
	
Since,	
	

	
[arg ( )] ( ) ( )C f z d c

winding number of around origin

 


  
   

	

	
 	Winding	number	of		the	curve ( )f C  	around	origin	
							=	 0N N .	
	
Notes.	
(1) Let	f	be	analytic	inside	and	on	C .	Then,	
		

(a) f	has	m	zeros	 inside	C	 	 iff	 	 ( )f C  	winds	m	times	around	
origin	

	
Example.		Let	f(z)	=	z2.	Then,		f(z)	has	2	zeros	in	a	simple	closed	
curve	 C 	 enclosing	 origin.	 It	 follows	 that	 ( )f C  	 winds									
2‐times	around	the	origin.	
	
	
	
	
	
	
	
	
	

2( )f z z  

C 

  
 0  0 

f  
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(b)	f		has	no	zeros	inside	C 		iff		 ( )f C  	does	not	wind	around	
origin	
	
Example.	 Let	 f(z)	 have	 no	 zeros	 in	 a	 simple	 closed	 curve	 C 	
enclosing	 origin.	 	 It	 follows	 that	 ( )f C  	 does	 not	 wind	
around	origin.	
	
	
	
	
	

 f 
 C 

  
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(2) Let	f	be	nonzero	inside	C .	Then,	
			
(a) f	has	no	poles	inside	C 		iff		 ( )f C  	does	not	wind	around	
origin	

	
(b) f	has	n	poles	 inside	C 	 	 iff	 	 ( )f C  	winds	n	times	around	
origin.	

	
	

Example.	
2

1
( )f z

z
 ,	 : 1C z  	
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Rouche’s	Theorem	
	
	Let	 f	 and	 g	 be	 analytic	 inside	 and	 on	 a	 simple,	 closed,									
p.w.	smooth	curve	C .	If	 ( ) ( )f z g z for all points z on C ,	then	
f(z)	 and	 f(z)	 +	 g(z)	 have	 same	 number	 of	 zeros	 inside	 C .	 It	 is	
assumed	that	C 	is	oriented	in	anticlockwise	direction.	
	
Proof.		Observe	that		
	
(i) f		has	no	zeros	on	C 	( , ( ) ( ) 0)for z C f z g z   	
(ii) f	+	g	has	no	zeros	on	C 	

( , ( ) ( ) ( ) ( ) 0)for z C f z g z f z g z     .	
	

Let	 fN Number of zeros of f inside C 	

						 f gN Number of zeros of f g inside C   .	

	
By	 Argument	 Principle,	 since	 f	 	 and	 	 f	 +	 g	 	 have	 no	 poles						
inside	C ,	
	

1
[arg ( )]

2(1)
1

[arg( ( ) ( ))]
2

C f

C f g

f z N

f z g z N



 

  

   

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Now,	
( )

(2) arg[ ( ) ( )] arg[(1 ) ( )]
( )

( )
arg[(1 )] arg[ ( )]

( )

C C

C C

g z
f z g z f z

f z

g z
f z

f z

    

    
	

Let	
( )

1
( )

g z
w

f z
  	maps	C 	on	to	 .	Then,	 	lies	inside	the	circle	

1 1w   	(since,	for	any	point	w ,	
( )

1 1 1 1
( )

g z
w

f z
     )	.	

					 	does	not	wind	around	origin	

					
( )

arg[1 ] 0
( )C

g z
f z

   .	

( (1) (2))
f f g

by and
N N   	

	
Thus,	f		and	f	+	g		have	the	same	number	of	zeros	inside	C .	
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Example.	Find	the	number	of	zeros	of	 10 7 3( ) 6 3 1P z z z z    	in	
1z  .	

	
Solution.	 Let	 7 10 3( ) 6 ( ) 3 1f z z and g z z z     .	 Then,	 on	

1z  ,		
	 	 ( ) 5 ( ) 6g z and f z  	
Therefore,	 the	 conditions	 of	 Rouche’s	 Theorem	 are	 satisfied.	
Since	 f(z)	 has	 7	 zeros	 in	 1z  ,	 f(z)	 +	 g(z)	 =	P(z)	 also	 have	 7	
zeros	in		 1z  .	
	
Exercise.	 Find	 the	 number	 of	 zeros	 of	

7 6 5 3( ) 4 15 7 2P z z z z z     	in	1 2z  .	
	
Hint.	

	
7 6 3 51, 4 7 2 14 15 15

5 1

On z z z z z

P has zeros in z

       

 
		

	
and	
	

7 6 3 52, 4 7 2 442 15 482

5 2.

On z z z z z

P has zeros in z

       

 
	

	
Therefore	P(z)	has	no	zeros	in	1 2z  .	
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Exercise.	Show	 that	 5 3( ) 2 2 3P z z z z    has	exactly	one	root	
in	first	quadrant.	
	
Solution.		
	
	

[0, ](arg ( )) 0R P z  	
5 5 2 2(arg ( )) [arg( 2 2 3)]

R R

i i i
K KP z R e R e Re        	

	 	
5

[5 ]
2RK
   .	

[ ,0][arg ( )] 0
2 2iR P z
 

     .	

Therefore,	
1

[arg ( )] 1
2 RC P z

  ,	where	 [0, ] [ ,0]R RC R K iR   .	
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