Lecture 16

Mapping Properties of Analytic Functions

Example. Consider $f(z) = z^2$, z = x + iy and w = f(z) = u + iv. Then

$$u = x^2 - y^2, v = 2xy$$
 (*)

Using (*), the following mapping properties of $f(z) = z^2$ are obtained:

(1) The hyperbolas $x^2 - y^2 = c$ and 2xy = d are mapped into straight lines u = c and v = d. If $c, d \neq 0$, the hyperbolas as will as their images intersect at right angles as shown in the following figure:

Each branch of the hyperbola is mapped onto the same straight line. The image of the region x > 0, y > 0, xy < 1 is the strip 0 < v < 2.

(II) The image of the lines $x = \pm c$, $(c \neq 0)$ is the same parabola $v^2 = -4c^2(u-c^2), \left(\frac{dv}{du}\right)_1 = -\frac{2c^2}{v}$ (1) (since, $x = \pm c \Rightarrow u = c^2 - y^2$ and $v = \pm 2yc \Rightarrow -y^2 = u - c^2$ and also $y^2 = \frac{v^2}{4c^2} \Rightarrow v^2 = -4c^2(u-c^2)$)

Similarly, the image of the lines $y = \pm d$, $(d \neq 0)$ is the same parabola

Therefore, $\left(\frac{dv}{du}\right)_1 \times \left(\frac{dv}{du}\right)_2 = -\frac{4c^2d^2}{v^2} = -1$ at $v = \pm 2cd$ implying that the lines $x = \pm c$, $y = \pm d$ as well as their images intersect at

that the lines $x = \pm c$, $y = \pm d$ as well as their images intersect at right angles as shown in the following figure:

(III) If $z = re^{i\theta}$, $f(z) = r^2 e^{2i\theta}$. Thus, a circle of radius r is mapped onto a circle of radius r^2 in a 'one to two' fashion by $f(z) = z^2$.

(IV) Image of Sector $S(\alpha, \beta) = \{z : \alpha < \arg z < \beta\}$ is the sector $S(2\alpha, 2\beta)$. Thus, the angle of the sector is doubled by the mapping $f(z) = z^2$

It also follows from the above, that the restriction of $f(z) = z^2$ to $S(\alpha, \beta)$ would be one to one only when $\beta - \alpha < \pi$.

The observations in the above example are consequences of the following result:

Theorem. Let f(z) be analytic in a domain G. Then, f(z) preserves angles between any two curves at a point $a \in G$ iff $f'(a) \neq 0$.

If $f'(a) = ... = f^{(m-1)}(a) = 0$, $f^{(m)}(a) \neq 0$, then angle between the curves at a are magnified m-times by the mapping f(z).

Proof. Let $C_1 : z_1(t)$ and $C_2 : z_2(t)$, $0 \le t \le 1$ be any two curves in G that intersect at the point $a = z_1(t_1) = z_2(t_2)$. Let $z_1 \in C_1$ and $z_2 \in C_2$ be such that $|z_1 - a| = |z_2 - a| = r$. Then,

Let α be the angle between tangents to C_1 and C_2 at the point a. Then,

$$\alpha = \lim_{r \to 0} \arg\left(\frac{z_2 - a}{z_1 - a}\right)$$

where, α is measured from arc $z_1(t)$ to arc $z_2(t)$. Let $w_1 = f(z_1), w_2 = f(z_2)$ and $w_0 = f(a)$. Further, let $\Gamma_1 = f(C_1)$ and $\Gamma_2 = f(C_2)$. Then, the angle β between Γ_1 and Γ_2 is given by

$$\beta = \lim_{r \to 0} \arg\left(\frac{w_2 - w_0}{w_1 - w_0}\right), \text{ where} \\ w_2 - w_0 = \rho_2 e^{i\varphi_2} \text{ and } w_1 - w_0 = \rho_1 e^{i\varphi_1}$$

Therefore,
$$\beta = \lim_{r \to 0} \arg\left(\frac{f(z_2) - f(a)}{f(z_1) - f(a)}\right)$$

= $\lim_{r \to 0} \arg\left[\left\{\frac{(f(z_2) - f(a))/(z_2 - a)}{(f(z_1) - f(a))/(z_1 - a)}\right\}\left\{\frac{z_2 - a}{z_1 - a}\right\}\right]$

Now, since *f* is differentiable at the point *a*,

$$\lim_{r \to 0} \frac{f(z_2) - f(a)}{z_2 - a} = \lim_{r \to 0} \frac{f(z_1) - f(a)}{z_1 - a} = f'(a) \neq 0.$$

Therefore, $\beta = \lim_{r \to 0} \arg\left(\frac{z_2 - a}{z_1 - a}\right) = \alpha$ (using continuity of the

argument). This also shows that the sense of rotation is also preserved.

Now, if
$$f'(a) = ... = f^{(m-1)}(a) = 0$$
, $f^{(m)}(a) \neq 0$, then
 $f(z) = f(a) + c_m (z-a)^m + ..., where \ c_m \neq 0$.
Therefore, $\beta = \lim_{r \to 0} \arg\left\{\frac{f(z_2) - f(a)}{f(z_1) - f(a)}\right\} = \lim_{r \to 0} \arg\left\{\frac{z_2 - a}{z_1 - a}\right\}^m = m\alpha$.

 \Rightarrow The angle between image curves is magnified m-times.

Remarks.

(i) Since Γ_1 has the parametric equation $w_1(t) = f(z_1(t))$, $w'_1(t) = f'(z_1(t)) z'_1(t)$, $z_1(t_0) = a$

 $\Rightarrow \arg w_1'(t_0) = \arg f'(z_1(t_0)) + \arg z_1'(t_0), \ f'(a) \neq 0$

 \Rightarrow Curve C_1 at a rotates by an angle $\arg f'(a)$ and forms the curve Γ_1 at $w_0 = f(a)$, under the mapping f(z).

(ii) Further, since $|f'(a)| = \lim_{z \to a} \frac{|f(z) - f(a)|}{|z - a|}$, the expression |f'(a)| gives the magnification in the image of the curve C_1 at the point a under the mapping f(z).

(iii) By (i) and (ii) above it follows that under the mapping f(z), at each point there is rotation by an amount $\arg f'(a)$ and magnification by an amount |f'(a)| which is responsible in locally **distorting** the shape of the curve C_1 to its image Γ_1 , under the mapping f(z).

Conformal Mapping. A mapping which preserves the angle as well as rotation between any two curves intersecting at the point a, is called a Conformal Mapping at the point a.

Thus, if f(z) is analytic at the point a and $f'(a) \neq 0$, then f(z) is a conformal mapping at the point a.

Example1. $f(z) = \overline{z}$ is not conformal at any point z.

Example2. $f(z) = z^2$ is not conformal at z = 0. It is conformal at any point $z \neq 0$.