Lecture 16

Mapping Properties of Analytic Functions

Example. Consider $f(z)=z^{2}, z=x+i y$ and $w=f(z)=u+i v$. Then

$$
\begin{equation*}
u=x^{2}-y^{2}, v=2 x y \tag{*}
\end{equation*}
$$

Using (*), the following mapping properties of $f(z)=z^{2}$ are obtained:
(I) The hyperbolas $x^{2}-y^{2}=c$ and $2 x y=d$ are mapped into straight lines $u=c$ and $v=d$. If $c, d \neq 0$, the hyperbolas as will as their images intersect at right angles as shown in the following figure:

Each branch of the hyperbola is mapped onto the same straight line. The image of the region $x>0, y>0, x y<1$ is the strip $0<v<2$.
(II) The image of the lines $x= \pm c,(c \neq 0)$ is the same parabola $v^{2}=-4 c^{2}\left(u-c^{2}\right),\left(\frac{d v}{d u}\right)_{1}=-\frac{2 c^{2}}{v}$
(since, $x= \pm c \Rightarrow u=c^{2}-y^{2}$ and $v= \pm 2 y c \Rightarrow-y^{2}=u-c^{2}$
and also $\left.y^{2}=\frac{v^{2}}{4 c^{2}} \Rightarrow v^{2}=-4 c^{2}\left(u-c^{2}\right)\right)$

Similarly, the image of the lines $y= \pm d,(d \neq 0)$ is the same parabola

$$
\begin{equation*}
v^{2}=4 d^{2}\left(u+d^{2}\right),\left(\frac{d v}{d u}\right)_{2}=\frac{2 d^{2}}{v} \tag{2}
\end{equation*}
$$

(since, $y= \pm d \Rightarrow u=x^{2}-d^{2}$ and $v= \pm 2 x d \Rightarrow x^{2}=u+d^{2}$
and also $\left.x^{2}=\frac{v^{2}}{4 d^{2}} \Rightarrow v^{2}=4 d^{2}\left(u+d^{2}\right)\right)$

Therefore, $\left(\frac{d v}{d u}\right)_{1} \times\left(\frac{d v}{d u}\right)_{2}=-\frac{4 c^{2} d^{2}}{v^{2}}=-1$ at $v= \pm 2 c d \quad$ implying that the lines $x= \pm c, y= \pm d$ as well as their images intersect at right angles as shown in the following figure:

z - plane

(III) If $z=r e^{i \theta}, f(z)=r^{2} e^{2 i \theta}$. Thus, a circle of radius r is mapped onto a circle of radius r^{2} in a 'one to two' fashion by $f(z)=z^{2}$.
(IV) Image of Sector $S(\alpha, \beta)=\{z: \alpha<\arg z<\beta\}$ is the sector $S(2 \alpha, 2 \beta)$. Thus, the angle of the sector is doubled by the mapping $f(z)=z^{2}$

It also follows from the above, that the restriction of $f(z)=z^{2}$ to $S(\alpha, \beta)$ would be one to one only when $\beta-\alpha<\pi$.

The observations in the above example are consequences of the following result:

Theorem. Let $f(z)$ be analytic in a domain G. Then, $f(z)$ preserves angles between any two curves at a point $a \in G$ iff $f^{\prime}(a) \neq 0$.

If $f^{\prime}(a)=\ldots=f^{(m-1)}(a)=0, f^{(m)}(a) \neq 0$, then angle between the curves at a are magnified m-times by the mapping $f(z)$.

Proof. Let $C_{1}: z_{1}(t)$ and $C_{2}: z_{2}(t), 0 \leq t \leq 1$ be any two curves in G that intersect at the point $a=z_{1}\left(t_{1}\right)=z_{2}\left(t_{2}\right)$. Let $z_{1} \in C_{1}$ and $z_{2} \in C_{2}$ be such that $\left|z_{1}-a\right|=\left|z_{2}-a\right|=r$. Then,

$$
z_{1}-a=r e^{i \theta_{1}} \text { and } z_{2}-a=r e^{i \theta_{2}}
$$

$$
\Rightarrow \frac{z_{1}-a}{z_{2}-a}=e^{i\left(\theta_{2}-\theta_{1}\right)} \Rightarrow \theta_{2}-\theta_{1}=\arg \left(\frac{z_{2}-a}{z_{1}-a}\right)
$$

Let α be the angle between tangents to C_{1} and C_{2} at the point a. Then,

$$
\alpha=\lim _{r \rightarrow 0} \arg \left(\frac{z_{2}-a}{z_{1}-a}\right)
$$

where, α is measured from $\operatorname{arc} z_{1}(t)$ to $\operatorname{arc} z_{2}(t)$.
Let $w_{1}=f\left(z_{1}\right), w_{2}=f\left(z_{2}\right)$ and $w_{0}=f(a)$.

Further, let $\Gamma_{1}=f\left(C_{1}\right)$ and $\Gamma_{2}=f\left(C_{2}\right)$.
Then, the angle β between Γ_{1} and Γ_{2} is given by
$\beta=\lim _{r \rightarrow 0} \arg \left(\frac{w_{2}-w_{0}}{w_{1}-w_{0}}\right)$, where

$w_{2}-w_{0}=\rho_{2} e^{i \varphi_{2}}$ and $w_{1}-w_{0}=\rho_{1} e^{i \varphi_{1}}$.

Therefore, $\beta=\lim _{r \rightarrow 0} \arg \left(\frac{f\left(z_{2}\right)-f(a)}{f\left(z_{1}\right)-f(a)}\right)$

$$
=\lim _{r \rightarrow 0} \arg \left[\left\{\frac{\left(f\left(z_{2}\right)-f(a)\right) /\left(z_{2}-a\right)}{\left(f\left(z_{1}\right)-f(a)\right) /\left(z_{1}-a\right)}\right\}\left\{\frac{z_{2}-a}{z_{1}-a}\right\}\right] .
$$

Now, since f is differentiable at the point a,
$\lim _{r \rightarrow 0} \frac{f\left(z_{2}\right)-f(a)}{z_{2}-a}=\lim _{r \rightarrow 0} \frac{f\left(z_{1}\right)-f(a)}{z_{1}-a}=f^{\prime}(a) \neq 0$.
Therefore, $\beta=\lim _{r \rightarrow 0} \arg \left(\frac{z_{2}-a}{z_{1}-a}\right)=\alpha \quad$ (using continuity of the argument). This also shows that the sense of rotation is also preserved.

Now, if $f^{\prime}(a)=\ldots=f^{(m-1)}(a)=0, f^{(m)}(a) \neq 0$, then
$f(z)=f(a)+c_{m}(z-a)^{m}+\ldots$, where $c_{m} \neq 0$.
Therefore, $\beta=\lim _{r \rightarrow 0} \arg \left\{\frac{f\left(z_{2}\right)-f(a)}{f\left(z_{1}\right)-f(a)}\right\}=\lim _{r \rightarrow 0} \arg \left\{\frac{z_{2}-a}{z_{1}-a}\right\}^{m}=m \alpha$.
\Rightarrow The angle between image curves is magnified m-times.

Remarks.

(i) Since Γ_{1} has the parametric equation $w_{1}(t)=f\left(z_{1}(t)\right)$, $w_{1}^{\prime}(t)=f^{\prime}\left(z_{1}(t)\right) z_{1}^{\prime}(t), z_{1}\left(t_{0}\right)=a$
$\Rightarrow \arg w_{1}^{\prime}\left(t_{0}\right)=\arg f^{\prime}\left(z_{1}\left(t_{0}\right)\right)+\arg z_{1}^{\prime}\left(t_{0}\right), \quad f^{\prime}(a) \neq 0$
\Rightarrow Curve C_{1} at a rotates by an angle arg $f^{\prime}(a)$ and forms the curve Γ_{1} at $w_{0}=f(a)$, under the mapping $f(z)$.
(ii) Further, since $\left|f^{\prime}(a)\right|=\lim _{z \rightarrow a} \frac{|f(z)-f(a)|}{|z-a|}$, the expression $\left|f^{\prime}(a)\right|$ gives the magnification in the image of the curve C_{1} at the point a under the mapping $f(z)$.
(iii) By (i) and (ii) above it follows that under the mapping $f(z)$, at each point there is rotation by an amount $\arg f^{\prime}(a)$ and magnification by an amount $\left|f^{\prime}(a)\right|$ which is responsible in locally distorting the shape of the curve C_{1} to its image Γ_{1}, under the mapping $f(z)$.

Conformal Mapping. A mapping which preserves the angle as well as rotation between any two curves intersecting at the point a, is called a Conformal Mapping at the point a.

Thus, if $f(z)$ is analytic at the point a and $f^{\prime}(a) \neq 0$, then $f(z)$ is a conformal mapping at the point a.
Example1. $f(z)=\bar{z}$ is not conformal at any point z.
Example2. $f(z)=z^{2}$ is not conformal at $z=0$. It is conformal at any point $\mathrm{z} \neq 0$.

