Lecture 18

Example. Prove that the circles of Apollonius K : $\left|\frac{z-p}{z-q}\right|=k, k \neq 1$, are orthogonal to any circle C passing through the points p and q.

Consider the Mobius transformation $w=\frac{z-p}{z-q}$. It maps
(i) the circle K one-one onto the circle $|w|=k$
and
(ii) any circle C through the points p and q is mapped oneone onto a straight line L passing through origin , since the points p and q are mapped to the points 0 and ∞ by $w=\frac{z-p}{z-q}$.

Now, the circle $|w|=k$ is orthogonal to the Line L. Therefore, their images under the inverse of the transformation $w=\frac{z-p}{z-q}$ are Apollonius circle K and the circle C through the points p and q, also are orthogonal, since the inverse of the given Mobius transformation is also a Mobius transformation and hence preserves the angle of intersection.

Construction of a Mobius Transformation which takes the values $1,0, \infty$ at three given distinct points $z_{2}, z_{3}, z_{4} \in \boldsymbol{C} \bigcup\{\infty\}$

Define, $S^{*}(z)=\frac{\left(z-z_{3}\right)}{\left(z-z_{4}\right)} / \frac{\left(z_{2}-z_{3}\right)}{\left(z_{2}-z_{4}\right)}, z_{2}, z_{3}, z_{4} \in \boldsymbol{C}$

$$
\begin{aligned}
& =\frac{z-z_{3}}{z-z_{4}}, \text { if } z_{2}=\infty \\
& =\frac{z_{2}-z_{4}}{z-z_{4}}, \text { if } z_{3}=\infty \\
& =\frac{z-z_{3}}{z_{2}-z_{3}}, \text { if } z_{4}=\infty .
\end{aligned}
$$

Then, $S^{*}\left(z_{2}\right)=1, S^{*}\left(z_{3}\right)=0, S^{*}\left(z_{4}\right)=\infty$. Moreover, S^{*} is the only Mobius Transformation having this property, since a Mobius Transformation is uniquely determined by specifying its action on three given distinct points.

Notation: The transformation $S^{*}(z)$ is also denoted as $\left(z, z_{2}, z_{3}, z_{4}\right)$

Example. Construct a Mobius Transformation $T(z)$ which maps $G=\{z: \operatorname{Re} z>0\}$ onto $D=\{z:|z|<1\}$.

Solution. Give an orientation ($-i, 0, i$) to imaginary axis. Then, the Mobius Transformation that maps the imaginary axis onto real axis such that $-i \rightarrow 1,0 \rightarrow 0$ and $i \rightarrow \infty$ is given by

$$
S(z)=(z,-i, 0, i)=\frac{2 z}{z-i} .
$$

The region G lies to the right of the imaginary axis with respect to the orientation $(-i, 0, i)$ of the imaginary axis. Further, the right hand side of real axis with orientation $(1,0, \infty)$ is the upper half plane P. Therefore, the image of G by Mobius Transformation S is upper half-plane P.

Next, let $\Gamma=\{z:|z|=1\}$ has the orientation $(-i,-1, i)$. Then, the Mobius Transformation that maps Γ onto real axis such that $-i \rightarrow 1,-1 \rightarrow 0$ and $i \rightarrow \infty$ is given by

$$
R(z)=(z,-i,-1, i)=\frac{2 i}{i-1} \cdot \frac{z+1}{z-i}
$$

Since, the disk D lies to the right of the circle Γ with orientation ($-i,-1, i$) the Mobius Transformation R maps disk D on upper half- plane P, which lies to the right side of real line with orientation $(1,0, \infty)$.

Consequently, $T(z)=\left(R^{-1} \circ S\right)(z)=\frac{z-1}{z+1}$ is the required Mobius Transformation which maps G onto D.

Example. Find the image of $\left\{z:|\operatorname{Im} z|<\frac{\pi}{2}\right\}$ under the mapping $g(z)=\tanh \frac{Z}{2}$.
Solution: Observe that $g(z)=\tanh \frac{z}{2}=T\left(e^{z}\right)=\frac{e^{z}-1}{e^{z}+1}$, where T is the Mobius Transformation given by $T(z)=\frac{z-1}{z+1}$. Then, $\mathrm{g}(\mathrm{z})$ maps the infinite strip $\left\{z:|\operatorname{Im} z|<\frac{\pi}{2}\right\}$ onto $|z|<1$, since e^{z} maps $\left\{z:|\operatorname{Im} z|<\frac{\pi}{2}\right\}$ onto $G=\{z: \operatorname{Re} z>0\}$ and by the previous example $T(z)=\frac{z-1}{z+1}$ maps $G=\{z: \operatorname{Re} z>0\}$ onto $|z|<1$.

Example. Let G be the open region lying between the arcs of the circles Γ_{1} and Γ_{2} intersecting at the points a and b . Find a mapping of G onto a sector symmetric about the real axis.

Solution. Let L be the line passing through the points a and b. Give L the orientation (∞, a, b). Then the Mobius transformation T given by $T(z)=(z, \infty, a, b)=\frac{z-a}{z-b}$ maps L onto the real axis with $T(\infty)=1, T(a)=0, T(b)=\infty$. Now, since under a Mobius Transformation circles on C_{∞} are mapped to circles in C_{∞}, images $T\left(\Gamma_{1}\right)$ and $T\left(\Gamma_{2}\right)$ are circles in C_{∞} passing through 0 and ∞, i.e. these are straight lines.

Let, $T(G)=\{w:-\beta<\arg w<\alpha\}, \alpha, \beta>0$.

Now, to map the sector $T(G)$ to a sector symmetric about the real axis, note that the opening angle of $\mathrm{T}(\mathrm{G})$ is $(\alpha+\beta) / 2$. Therefore, if θ is the angle through which, by rotating the region $T(G)$, it becomes symmetric about real axis, then $\alpha+\theta=\frac{\alpha+\beta}{2}$, or $\theta=\frac{\beta-\alpha}{2}$. Note that $-\beta+\theta=-\frac{\alpha+\beta}{2}$. Such a Mobius Transformation is therefore $S(z)=e^{i(\beta-\alpha) / 2} z$. Consequently, the required transformation is $S \circ T(z)=e^{i(\beta-\alpha) / 2} \frac{z-a}{z-b}$.

Note. A transformation mapping the region G of above Example to the right half plane is given by

$$
[S \circ T(z)]^{\pi / 2(\alpha+\beta)}=\left[e^{i(\beta-\alpha) / 2} \frac{z-a}{z-b}\right]^{\pi / 2(\alpha+\beta)}
$$

