Lecture 18

Example. Prove that the circles of Apollonius *K*: $\left|\frac{z-p}{z-q}\right| = k, k \neq 1$, are orthogonal to any circle *C* passing through the points *p* and *q*.

Consider the Mobius transformation $w = \frac{z-p}{z-q}$. It maps

(i) the circle K one-one onto the circle |w| = k

and

(ii) any circle *C* through the points *p* and *q* is mapped oneone onto a straight line L passing through origin , since the points *p* and *q* are mapped to the points 0 and ∞ by $w = \frac{z-p}{z-a}$.

Now, the circle |w| = k is orthogonal to the Line L. Therefore, their images under the inverse of the transformation $w = \frac{z-p}{z-q}$ are Apollonius circle K and the circle C through the points p and q, also are orthogonal, since the inverse of the given Mobius transformation is also a Mobius transformation and hence preserves the angle of intersection.

Construction of a Mobius Transformation which takes the values 1, 0, ∞ at three given distinct points $z_2, z_3, z_4 \in C \cup \{\infty\}$

Define,
$$S^*(z) = \frac{(z-z_3)}{(z-z_4)} / \frac{(z_2-z_3)}{(z_2-z_4)}, z_2, z_3, z_4 \in C$$

$$= \frac{z-z_3}{z-z_4}, \text{ if } z_2 = \infty$$

$$= \frac{z_2-z_4}{z-z_4}, \text{ if } z_3 = \infty$$

$$= \frac{z-z_3}{z_2-z_3}, \text{ if } z_4 = \infty.$$

Then, $S^*(z_2) = 1, S^*(z_3) = 0, S^*(z_4) = \infty$. Moreover, S^* is the only Mobius Transformation having this property, since a Mobius Transformation is uniquely determined by specifying its action on three given distinct points.

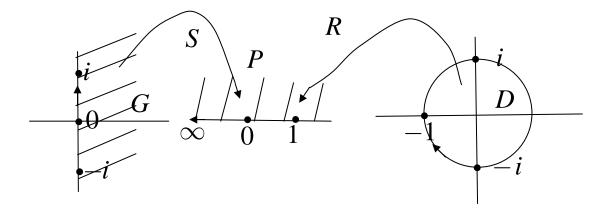
Notation: The transformation $S^*(z)$ is also denoted as (z, z_2, z_3, z_4)

Example. Construct a Mobius Transformation T(z) which maps $G = \{z : \text{Re } z > 0\}$ onto $D = \{z : |z| < 1\}$.

Solution. Give an orientation (-i, 0, i) to imaginary axis. Then, the Mobius Transformation that maps the imaginary axis onto real axis such that $-i \rightarrow 1, 0 \rightarrow 0$ and $i \rightarrow \infty$ is given by

$$S(z) = (z, -i, 0, i) = \frac{2z}{z-i}.$$

The region G lies to the right of the imaginary axis with respect to the orientation (-i, 0, i) of the imaginary axis. Further, the right hand side of real axis with orientation $(1,0,\infty)$ is the upper half plane P. Therefore, the image of G by Mobius Transformation S is upper half-plane P.



Next, let $\Gamma = \{z : |z| = 1\}$ has the orientation(-i, -1, i). Then, the Mobius Transformation that maps Γ onto real axis such that $-i \rightarrow 1, -1 \rightarrow 0$ and $i \rightarrow \infty$ is given by

$$R(z) = (z, -i, -1, i) = \frac{2i}{i-1} \cdot \frac{z+1}{z-i}.$$

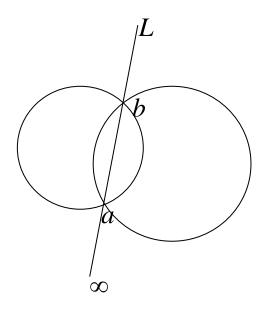
Since, the disk *D* lies to the right of the circle Γ with orientation (-i, -1, i) the Mobius Transformation *R* maps disk *D* on upper half- plane *P*, which lies to the right side of real line with orientation $(1, 0, \infty)$.

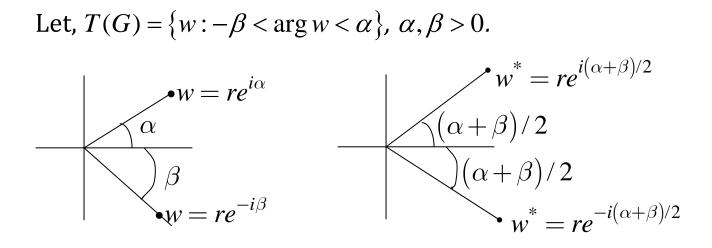
Consequently, $T(z) = (R^{-1} \circ S)(z) = \frac{z-1}{z+1}$ is the required Mobius Transformation which maps G onto D.

Example. Find the image of $\left\{z: |\operatorname{Im} z| < \frac{\pi}{2}\right\}$ under the mapping $g(z) = \tanh \frac{z}{2}$.

Solution: Observe that $g(z) = \tanh \frac{z}{2} = T(e^z) = \frac{e^z - 1}{e^z + 1}$, where T is the Mobius Transformation given by $T(z) = \frac{z - 1}{z + 1}$. Then, g(z)maps the infinite strip $\left\{ z : |\operatorname{Im} z| < \frac{\pi}{2} \right\}$ onto |z| < 1, since e^z maps $\left\{ z : |\operatorname{Im} z| < \frac{\pi}{2} \right\}$ onto $G = \{ z : \operatorname{Re} z > 0 \}$ and by the previous example $T(z) = \frac{z - 1}{z + 1}$ maps $G = \{ z : \operatorname{Re} z > 0 \}$ onto |z| < 1. **Example.** Let G be the open region lying between the arcs of the circles Γ_1 and Γ_2 intersecting at the points a and b. Find a mapping of G onto a sector symmetric about the real axis.

Solution. Let L be the line passing through the points a and b. Give L the orientation (∞, a, b) . Then the Mobius transformation T given by $T(z) = (z, \infty, a, b) = \frac{z-a}{z-b}$ maps L onto the real axis with $T(\infty) = 1$, T(a) = 0, $T(b) = \infty$. Now, since under a Mobius Transformation circles on C_{∞} are mapped to circles in C_{∞} , images $T(\Gamma_1)$ and $T(\Gamma_2)$ are circles in C_{∞} passing through 0 and ∞ , i.e. these are straight lines.





Now, to map the sector T(G) to a sector symmetric about the real axis, note that the opening angle of T(G) is $(\alpha + \beta)/2$. Therefore, if θ is the angle through which, by rotating the region T(G), it becomes symmetric about real axis, then $\alpha + \theta = \frac{\alpha + \beta}{2}$, or $\theta = \frac{\beta - \alpha}{2}$. Note that $-\beta + \theta = -\frac{\alpha + \beta}{2}$. Such a Mobius Transformation is therefore $S(z) = e^{i(\beta - \alpha)/2}z$. Consequently, the required transformation is $S \circ T(z) = e^{i(\beta - \alpha)/2} \frac{z - \alpha}{z - b}$.

Note. A transformation mapping the region G of above Example to the right half plane is given by

$$\left[S \circ T(z)\right]^{\pi/2(\alpha+\beta)} = \left[e^{i(\beta-\alpha)/2} \frac{z-a}{z-b}\right]^{\pi/2(\alpha+\beta)}$$