Lecture 4

Properties of Logarithmic Function (Contd...)
Since, $\log Z=\ln |z|+i \operatorname{Arg} Z$

$$
\begin{aligned}
& u \equiv \operatorname{Re} \log z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) \\
& v \equiv \operatorname{Im} \log z=\tan ^{-1} \frac{y}{x}+\text { constant }
\end{aligned}
$$

It follows that $u_{x}=\frac{x}{x^{2}+y^{2}}=v_{y}, u_{y}=\frac{y}{x^{2}+y^{2}}=-v_{x}$

This shows that $\operatorname{Re} \log z$ and $\operatorname{Im} \log z$ are (i) continuous in $\boldsymbol{C}-\{z: \operatorname{Re} z \leq 0, \operatorname{Im} z=0\}$ (ii) partially differentiable and first order partial derivatives are continuous in $\boldsymbol{C}-\{z: \operatorname{Re} z \leq 0, \operatorname{Im} z=0\}$ (iii) Cauchy-Riemann equations hold.

Therefore,

- Log z is analytic in $C-\{z: \operatorname{Re} z \leq 0, \operatorname{Im} z=0\}$ and

$$
\frac{d}{d z} \log z=u_{x}+i v_{x}=\frac{x-i y}{x^{2}+y^{2}}=\frac{\bar{z}}{|z|^{2}}=\frac{1}{z}
$$

- The branch of $\operatorname{logarithm} \log _{\theta_{0}} z$, with $\theta_{0}<\arg z \leq \theta_{0}+2 \pi$, is a single valued function, and its properties are similar to the above properties of $\log z$.

Exponential Function.
Define $e^{z}=e^{x}(\cos y+i \sin y)$

Note that $e^{x} \rightarrow \infty$ and $e^{-x} \rightarrow 0$ as $x \rightarrow \infty$. But, $\lim _{y \rightarrow \infty} e^{i y}$ does not exist, since $\cos n \pi$ takes the values 1 and -1 for even and odd n, respectively. Consequently,

- $\lim e^{z}$ does not exist.
$z \rightarrow \infty$
- It follows easily by using the truth of CR equations for e^{Z} and the continuity of first order partial derivatives of real and imaginary parts of e^{z}, that e^{z} is analytic for all z and $\frac{d}{d z} e^{z}=e^{z}$.
- Since, $\left|e^{z}\right|=e^{x} \neq 0$, it follows that $e^{z} \neq 0$ for any z.
- e^{z} is a periodic function of complex period $2 \pi i$, since $e^{z+2 \pi i}=e^{x+i(y+2 \pi)}=e^{z}$.

The diagram sketched below illustrates that the fundamental period strip $\{z=x+i y:-\infty<x<\infty,-\pi<y \leq \pi\}$ is mapped oneone on-to $C-\{0\}$ by the function e^{Z}.

The above diagram is explained by the following analytical arguments:

$$
\begin{aligned}
& w=e^{x}(\cos y+i \sin y) \Rightarrow u=e^{x} \cos y, v=e^{x} \sin y,-\pi<y \leq \pi \\
& \Rightarrow e^{2 x}=u^{2}+v^{2} \text { or } x=\ln |w|, w \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
y=\operatorname{Arg} w= & \operatorname{Tan}^{-1} \frac{v}{u} ; \operatorname{Tan}^{-1} \frac{v}{u}+\pi \text { or } \operatorname{Tan}^{-1} \frac{v}{u}-\pi \\
& (\text { According as } u>0 ; u<0, v \geq 0 \text { or } u<0, v<0)
\end{aligned}
$$

$\Rightarrow \exists$ a unique $z=(x, y)$, with $-\infty<x<\infty,-\pi<y \leq \pi$, such that $\log w=z \Leftrightarrow e^{z}=w$.

- $\log \mathrm{z}$ is inverse function of e^{z}, since $e^{\log z}=\mathrm{z}$ and $\log e^{z}=z$.

In fact, that any branch of logarithm is inverse of exponential function, can be seen as follows:

Let, $z=r(\cos \theta+i \sin \theta)=x+i y$. Then, $\log _{\theta_{0}} z=\ln |z|+i \arg z$, where $\arg z=\theta$, with $\theta_{0}<\theta \leq \theta_{0}+2 \pi$.

$$
\begin{aligned}
e^{\log _{\theta_{0}} z} & =e^{\ln |z|} \cdot e^{i(\arg z)} \\
& =e^{\ln |z|} \cdot e^{i \theta} \\
& =|z| e^{i \theta} \\
& =z .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\log _{\theta_{0}} e^{z} & =\ln \left|e^{z}\right|+i \arg \left(e^{z}\right) \\
\text { where, } & -\pi+2 k_{0} \pi \leq \arg \left(e^{z}\right) \leq \pi+2 k_{0} \pi \text { for some integer } k_{0} \\
& =\ln e^{x}+i y \\
& =z
\end{aligned}
$$

Note: After introducing Power Series in the sequel we will be able to prove that
(i)If f is differentiable in the entire complex plane $\boldsymbol{C}, f(0)=1$ and $f^{\prime}(z)=f(z)$ for all z, then $f(z)$ is the exponential function.
(ii) If f is differentiable in the entire complex plane \boldsymbol{C}, $f(0)=f^{\prime}(0)=1$ and $f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right) \cdot f\left(z_{2}\right)$ for all z_{1} and z_{2}, then $f(z)$ is an exponential function.

Another characterization of the exponential function can be found in G. P. Kapoor, A new characterization of the exponential function, Amer. Math. Monthly (1974).

Trigonometric and Hyperbolic Functions. The definitions of Trigonometric and Hyperbolic Functions of complex valued functions of a complex variable as given below are analogous to corresponding Trigonometric and Hyperbolic Functions of real valued functions of a real variable.

However, some of properties of Trigonometric and Hyperbolic functions of a complex variable as pointed out below are drastically different from corresponding functions of a real variable.

Definitions

$\cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \tan z=\frac{\sin z}{\cos z}, \quad \cot z=\frac{\cos z}{\sin z}$,
$\operatorname{cosec} Z=\frac{1}{\sin z}, \quad \sec z=\frac{1}{\cos z}$.
$\cosh z=\frac{e^{z}+e^{-z}}{2}=\operatorname{cosiz}, \quad \sinh z=\frac{e^{z}-e^{-z}}{2}=-i \sin i z$,
$\tanh z=\frac{\sinh z}{\cosh z}=-i \tan i z, \quad \operatorname{coth} z=\frac{\cosh z}{\sinh z}=i \cot i z$,
$\operatorname{cosech} z=\frac{1}{\sinh z}$,
$\operatorname{sech} z=\frac{1}{\cosh z}$

Properties: The following properties of Trigonometric and Hyperbolic functions of a complex variable are drastically different from corresponding functions of a real variable, rest of standard properties are analogous:

1. $\sin z=\sin x \cosh y+i \cos x \sinh y$,
$\cos z=\cos x \cosh y-i \sin x \sinh y$, for $z=x+i y$.
Similar identities for other Trigonometric and Hyperbolic functions can also be easily derived.
2. $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y, \quad|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y \quad$ for $z=x+i y$
3. $\sin z$ and $\cos z$ are unbounded functions in \boldsymbol{C} (A complex valued function $f(z)$ is said to be bounded in a set A if $|f(z)| \leq M$ for some M and all $z \in A$, otherwise it is said to be unbounded). Since, $\quad|\sin i y| \rightarrow \infty$ and $|\cos i y| \rightarrow \infty$ as $y \rightarrow \infty, \quad \sin z$ and $\cos z$ are unbounded functions in \boldsymbol{C}. Recall that, since $|\sin x| \leq 1$ and $|\cos x| \leq 1$ for all $x \in \boldsymbol{R}$, $\sin x$ and $\cos x$ are bounded functions in \boldsymbol{R}.

Harmonic Conjugate:

Let $u: \boldsymbol{C} \rightarrow \boldsymbol{R}$ be a harmonic function, i.e. the function u and its partial derivatives up to the second order are continuous and satisfy the Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Definition: A function $v: \boldsymbol{C} \rightarrow \boldsymbol{R}$ is said to be Harmonic Conjugate of harmonic function $u: \boldsymbol{C} \rightarrow \boldsymbol{R}$, if

$$
u_{x}=v_{y} \text { and } v_{x}=-u_{y}
$$

The following Leibnitz Rule of differentiation under integral sign is needed for proving the existence of harmonic conjugate:

Let $\varphi:[a, b] \times[c, d] \rightarrow \boldsymbol{C}$ be continuous. Define

$$
g(t)=\int_{a}^{b} \varphi(s, t) d s
$$

If $\frac{\partial \varphi}{\partial t}$ exists and is cont. on $[a, b] \times[c, d]$, then g is diff. $\&$

$$
g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi(s, t)}{\partial t} d s
$$

Theorem 1 (Existence of Harmonic Conjugates).

Let $G=B(0, R), 0<R \leq \infty$ and $u: G \rightarrow \boldsymbol{R}$ be harmonic. Then, u has a harmonic conjugate in G

Proof. Define $v(x, y)$ by
$v(x, y)=\int_{0}^{y} u_{x}(x, t) d t+\varphi(x)$
and determine $\varphi(x)$ such that $v_{x}=-u_{y}$. (Note that $v_{y}=u_{x}$ is obviously satisfied)

The above integral is well defined since $L_{1} \in B(0, R)$.

Using Leibnitz Rule,

$$
\begin{aligned}
& v_{x}(x, y)=\int_{0}^{y} u_{x x}(x, t) d t+\varphi^{\prime}(x) \\
& =-\int_{0}^{y} u_{y y}(x, t) d t+\varphi^{\prime}(x) \\
& =-u_{y}(x, y)+u_{y}(x, 0)+\varphi^{\prime}(x) \\
& \Rightarrow \varphi^{\prime}(x)=-u_{y}(x, 0) \quad\left(\sin c e v_{x}=-u_{y}\right)
\end{aligned}
$$

Consequently, $v(x, y)=\int_{0}^{y} u_{x}(x, t) d t-\int_{0}^{x} u_{y}(s, 0) d s$
(since $L_{2} \in B(0, R)$)
is the required harmonic conjugate.

Notes.

1. The proof of above theorem gives a method to construct harmonic conjugate of a given harmonic function in the disk $B(0, R), 0<R \leq \infty$
2. The arguments of the proof and the result of the above theorem are valid for any domain G that is convex both in the direction of x and direction of y.
3. If $G=B(c, R)$, where $\mathrm{c}=(\mathrm{a}, \mathrm{b})$, the above arguments could be modified to give the harmonic conjugate as:

$$
v(x, y)=\int_{b}^{y} u_{x}(x, t) d t-\int_{a}^{x} u_{y}(s, b) d s
$$

Remarks.

1. Harmonic conjugate of u is unique up to a constant (To see this, let v and w be two harmonic conjugates of u. Then,

$$
\begin{aligned}
u_{x} & =v_{y}=w_{y} \\
-u_{y} & =v_{x}=w_{x}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& v_{y}=w_{y} \Rightarrow v=w+\varphi(x) \\
& v_{x}=w_{x} \Rightarrow v=w+\psi(y)
\end{aligned}
$$

so that $\varphi(x)=\psi(y)=$ constt.
2. The function f, whose real part is u is determined uniquely up to purely imaginary constant (Since harmonic conjugate v of u is unique up to a real constant, $f=u+i v$ is uniquely determined up to a purely imaginary constant.)

Examples.

1. $u(x, y)=x^{2}-y^{2}$.

Since, $u_{x}(x, y)=2 x, u_{y}(x, y)=-2 y$, the harmonic conjugate is

$$
\begin{gathered}
v(x, y)=\int_{0}^{y} u_{x}(x, t) d t-\int_{0}^{x} u_{y}(s, 0) d s \\
=\int_{0}^{y} 2 x d t-\int_{0}^{x} 0 d s=2 x y
\end{gathered}
$$

2. $u(x, y)=2 x y$.

Since $u_{x}(x, y)=2 y, u_{y}(x, y)=2 x$, the harmonic conjugate is

$$
\begin{gathered}
v(x, y)=\int_{0}^{y} u_{x}(x, t) d t-\int_{0}^{x} u_{y}(s, 0) d s \\
=\int_{0}^{y} 2 t d t-\int_{0}^{x} 2 s d s=y^{2}-x^{2} .
\end{gathered}
$$

The corresponding analytic function is

$$
\begin{aligned}
& f(z)=2 x y+i\left(y^{2}-x^{2}\right) \\
& \quad=-i\left(\left(x^{2}-y^{2}\right)+2 i x y\right) \\
& \quad=-i z^{2}
\end{aligned}
$$

Other Methods to find Harmonic Conjugates

Method 2. If u is harmonic in a region contained in $\{\mathrm{z}: \mathrm{z}>0\}$ (i.e., $\mathrm{x}>0, \mathrm{y}>0$ or first quadrant) and homogenous of degree $\mathrm{m}, m \neq 0$, i.e. for any $\mathrm{t}>0, u(t z)=t^{m} u(z)$, then $v=\frac{1}{m}\left(y u_{x}-x u_{y}\right)$ is a conjugate harmonic function of u.

Proof. Since $u(x, y)$ is a homogenous function, by Euler's Formula (see the derivation after this proof),

$$
u(x, y)=\frac{1}{m}\left(x u_{x}+y u_{y}\right)
$$

To show that $v=\frac{1}{m}\left(y u_{x}-x u_{y}\right)$ is the harmonic conjugate. It is easily verified that
$u_{x}=\frac{1}{m}\left(u_{x}+x u_{x x}+y u_{y x}\right)$
$v_{y}=\frac{1}{m}\left(u_{x}+y u_{x y}-x u_{y y}\right)$
$\Rightarrow u_{x}=v_{y}$ (since, $u_{x y}$ is continuous and u satisfies Laplace's equation.

The equation $u_{y}=-v_{x}$ is verified similarly.

Example. Find an analytic function whose real part is $u(x, y)=x^{2}-y^{2}+x y$.

The function u is homogenous of degree 2 and harmonic for all $z=x+i y$. Therefore, by Method 1 above,

$$
\begin{aligned}
v(x, y) & =\frac{1}{2}[y(2 x+y)-x(-2 y+x)] \\
& =2 x y+\frac{1}{2}\left(y^{2}-x^{2}\right)
\end{aligned}
$$

The corresponding analytic function is therefore
$f(z)=u+i v=\left(1-\frac{1}{2} i\right) z^{2}$.

Derivation of Euler's Formula for Homogenous Functins:

$\frac{d}{d t}(u(t z))=m t^{m-1}(u(z)) \Rightarrow \frac{\partial u}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial t}+\frac{\partial u}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial t}=m t^{m-1} u(z)$, where $x^{\prime}=t x, y^{\prime}=t y$.

Now, make $t \rightarrow 1$ and use continuity of u, to get
$u_{x^{\prime}} \rightarrow u_{x}$ and $u_{y^{\prime}} \rightarrow u_{y}\left(\frac{u\left(x^{\prime}+h\right)-u(x)}{h} \rightarrow \frac{u(x+h)-u(x)}{h}\right)$ as $x^{\prime} \rightarrow x$ and $y^{\prime} \rightarrow y$

Method 3 (Milne-Thompson Method: A completely informal method). Let $u(x, y)$ be a given Harmonic function.

- In the given expression of $u(x, y)$, put $x=\frac{Z}{2}, y=\frac{Z}{2 i}(!)$ and consider $g(z)=2 u\left(\frac{Z}{2}, \frac{Z}{2 i}\right)-\overline{f(0)}$.
- The imaginary part of $g(z)$ is the desired harmonic conjugate of $u(x, y)$.

Example. $u(x, y)=x^{2}-y^{2}$

Using Milne-Thompson method,

$$
\begin{aligned}
& f(z)=2 u\left(\frac{z}{2}, \frac{z}{2 i}\right)-u(0,0) \\
& \quad=2\left[\left(\frac{z}{2}\right)^{2}-\left(\frac{z}{2 i}\right)^{2}\right]=z^{2}
\end{aligned}
$$

Thus the desired harmonic conjugate is

$$
v(x, y)=\operatorname{Im} f(z)=2 x y
$$

Informal Justification of Milne-Thompson Method:

Let $v(x, y)$ be a Harmonic conjugate of the given Harmonic function $u(x, y)$ and $g=u+i v$ be the corresponding analytic function,
Denote, $\frac{\partial}{\partial z} \equiv \frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$. Then,

$$
\begin{align*}
\frac{\partial}{\partial z} \overline{g(z)}=\frac{\partial}{\partial z}(u-i v) & =\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(u-i v) \\
& =\frac{1}{2}\left[u_{x}-i v_{x}-i\left(u_{y}-i v_{y}\right)\right] \\
& =\frac{1}{2}\left[u_{x}-i v_{x}-i u_{y}-v_{y}\right] \\
& =\frac{1}{2}\left[u_{x}-v_{y}-i\left(v_{x}+u_{y}\right)\right] \\
& =0 \tag{1}
\end{align*}
$$

Informally assuming that z, \bar{z} are independent variables (!), deduce from (1) that $\overline{f(z)}$ is independent of z, i.e. it is a function of \bar{z} alone, i.e. $\overline{g(z)}=g^{*}(\bar{z}) \quad$ (say).

$$
\begin{align*}
\Rightarrow u(x, y) & =\frac{1}{2}[g(z)+\overline{g(z)}] \\
& =\frac{1}{2}\left[g(z)+g^{*}(\bar{z})\right] \tag{2}
\end{align*}
$$

In (2), $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$, where, x and y are real. Let us informally assume that (2) holds as well with x and y complex (!) and put

$$
x=\frac{Z}{2}, y=\frac{z}{2 i} .
$$

Then, (2) gives

$$
\begin{array}{rlr}
u\left(\frac{z}{2}, \frac{z}{2 i}\right) & =\frac{1}{2}\left[g(z)+g^{*}(0)\right] & \text { (since } \left.\bar{z}=x-i y=\frac{z}{2}-i \frac{z}{2 i}=0\right) \\
& =\frac{1}{2}[g(z)+\overline{g(0)}]
\end{array}
$$

Equation $(3) \Rightarrow g(z)=2 u\left(\frac{Z}{2}, \frac{z}{2 i}\right)-\overline{g(0)}$

$$
=2 u\left(\frac{Z}{2}, \frac{Z}{2 i}\right)-u(0,0)+u(0,0)-\overline{g(0)}
$$

Since $u(0,0)-\overline{f(0)}$ is a purely imaginary constant, it can be dropped from the above expression (since harmonic conjugates are unique only up to an imaginary constant).

$$
\Rightarrow g(z)=2 u\left(\frac{z}{2}, \frac{z}{2 i}\right)-\overline{f(0)}
$$

is an analytic function whose real part is $u(x, y)$.

The imaginary part of $g(z)$ is therefore the desired harmonic conjugate of $u(x, y)$.

