Lecture 4
Properties of Logarithmic Function (Contd...)
Since, Log z =In|z|+i Arg z

u=Relogz :iln(x2 +y?)

1Y | constant

X

=ImLogz=tan

> 2 Yy, Uy = 2y2
x+y X +y

[t follows that u, = = -V,

This shows that RelLogz and ImLogz are (i) continuous in
C{z:Rez<0,Imz=0} (ii) partially differentiable and first

order partial derivatives are continuous in
C{z:Rez<0,Imz=0} (iii) Cauchy-Riemann equations hold.

Therefore,

e Log z isanalyticin C—{z:Rez<0,Imz =0} and
x—-1y 7 1

iLoz—u+iv—
ng_X xXer || z'

e The branch of logarithm log,, z, with 6, <argz <6, +2x,is

a single valued function, and its properties are similar to
the above properties of Log z .



Exponential Function.

Define e’ =e*(cosy+isiny)

Note that e¥ = o and e — 0 as X — «. But, lime" does not

Y

exist, since cosnxz takes the values 1 and -1 for even and odd n,
respectively. Consequently,

lim e’ does not exist.
Z—>00

It follows easily by using the truth of CR equations for e’
and the continuity of first order partial derivatives of real

and imaginary parts of e’ , that e’ is analytic for all z and

d
— e’ =¢e’.
dz

Since,

e’|=e" 20, it follows that e’ 20 for any z.

eZ

e

is a periodic function of complex period 27, since
Z+271 _ ex+i(y+27z) _ ez
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The diagram sketched below illustrates that the fundamental

period strip {z=X+1y: -0 < X<, -7 <Yy < 7} is mapped one-
one on-to C —{0} by the function e”’.

eZ

72'/"_\
[ [ o M 0
[ L] N

—7T

The above diagram is explained by the following analytical
arguments:

w=e*(cosy+isiny) =>u=e*cosy,v=e*siny,-r<y<r
= e** =u”+v’ or x=In|w|, w=0
and

GV 4V LV
y=Argw=Tan*=;Tan =+ zorTan*=—7
u u u

(According asu>0;u<0,v>00ru<0,v<0)

= Ja unique z =(X,y), with —co< X< oo, — 7 <y <7, such that
Logw=z< e’ =w.



Log z

e Logzis inverse function of e, since e->?* =z and

Loge’ =z.

In fact, that any branch of logarithm is inverse of
exponential function, can be seen as follows:

Let, z=r(cos@+isinf) = x+1y. Then,
logy, z=1In|z|+iargz, where argz = 0, with 6, < 0 < 6y + 27.

eloggo VA _ eln ‘Z‘.ei(arg z)

_ eIn \-z\.eié?
e
=7.
Similarly,
log,, e° =Inje’|+i arg(ez),

where, —7 + 2k, < arg (e*) < 7 + 2k, for some integer k.

=Ine* +iy
=Z.



S)
Note: After introducing Power Series in the sequel we will be

able to prove that

(i)If f is differentiable in the entire complex plane C, f(0) = 1 and
f'(z) = f(z) for all z, then f{(z) is the exponential function.

(ii) If f is differentiable in the entire complex plane C,
fl0) = 1'(0)=1and f(zy+2,)= f(z).T(z,) for all z,and z,, then
f(z) is an exponential function.

Another characterization of the exponential function can be

found in G. P. Kapoor, A new characterization of the exponential
function, Amer. Math. Monthly (1974).




Trigonometric and Hyperbolic Functions. The definitions of
Trigonometric and Hyperbolic Functions of complex valued
functions of a complex variable as given below are analogous
to corresponding Trigonometric and Hyperbolic Functions of
real valued functions of a real variable.

However, some of properties of Trigonometric and Hyperbolic
functions of a complex variable as pointed out below are
drastically different from corresponding functions of a real
variable.

Definitions
“ye . L _e sinz COS Z
COSZ = , Sihz=———, tanz=——, cOtz=——,
2 21 COS Z Sin z
1 1
coseCz=——, Secz=——.
sinz COS Z
el +e7° . . et —eg7 ¢ .
coshz=———=cosiz, SINhz=———=-1SsIniz,
2 2
sinh z . . coshz . .
tanhz = =—l1taniz, cothz=— =1cotiz,
cosh z sinh z
cosechz = sech z =

sinhz’ cosh z
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Properties: The following properties of Trigonometric and
Hyperbolic functions of a complex variable are drastically
different from corresponding functions of a real variable, rest
of standard properties are analogous:

1.sinz =sin xcosh y +icosxsinhy,

C0SZ =cosxcoshy—isinxsinhy, for z=Xx+1y.

Similar identities for other Trigonometric and Hyperbolic
functions can also be easily derived.

2 . 2 .
sinz|” =sin®x+sinh®y,  |cosz|” =cos® x+sinh®y  for
Z=X+1y

.sinz and cosz are unbounded functions in € (A complex
valued function f(z)is said to be bounded in a set A if
|f(z)| <M for some M and all z< A, otherwise it is said to

be unbounded). Since, |Siniy| — oo and |Cosiy| —>
as y —oo, sinz and cosz are unbounded functions in C.
Recall that, since |Sin x|£1and |COS x|£1 for all xeR ,
sinx and cosx are bounded functions in R.



Harmonic Conjugate:

Let u:C—R be a harmonic function, i.e. the function u and its
partial derivatives up to the second order are continuous and
satisfy the Laplace’s equation

o°u az
o2 oy*

=0.

Definition: A function v:C—R is said to be Harmonic
Conjugate of harmonic function u:C—R, if

u, =v, and v, =-u,.

The following Leibnitz Rule of differentiation under integral sign
is needed for proving the existence of harmonic conjugate:

Let ¢ :[a,b]x[c,d] — C be continuous. Define
9(t) = [ (s, ) ds.
a

If%—f exists and is cont. on [a,b] x[c,d], then g is diff. &

0'(t) = j Ms ) ds




Theorem 1 (Existence of Harmonic Conjugates).

Let G=B(0,R),0<R<w and u:G —R be harmonic. Then, u
has a harmonic conjugate in G

Proof. Define v(x, y) by

y
V(% y) = [y (1) dt +p(x)
0

and determine ¢(X) such that v, =-u,.

(Note that v, = u, is obviously satisfied)

The above integral is well defined since L, € B(0,R).

Using Leibnitz Rule,
y
Vy (%, Y) = [ Uy (1) dt+9'(x)
0

y
= —[ Uy, (1) dt+9'(x)
0

=—Uy (X, y)+U,(x,0) +¢'(X)
= ¢'(x)=-u,(x,0) (sincev, =-u,)

y X
Consequently, v(X,Y) = '[ux(x,t) dt —Iuy(S,O) ds
0 0

(since L, € B(0O,R))
is the required harmonic conjugate.
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Notes.

1. The proof of above theorem gives a method to construct
harmonic conjugate of a given harmonic function in the

disk B(O,R), 0< R < oo

2.The arguments of the proof and the result of the above
theorem are valid for any domain G that is convex both in
the direction of x and direction of y.

3.1f G = B(c,R), where c = (a, b), the above arguments could
be modified to give the harmonic conjugate as:

v(X,y) = fux(x,t) dt—}uy(s,b) ds
b a
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Remarks.

1. Harmonic conjugate of u is unique up to a constant (To see
this, let vand w be two harmonic conjugates of u. Then,

U, =V, =W,
—Uy, =V, =W,
Therefore,

Vy =W, =V =W+g¢(X)

Vy =Wy :>VZW+W(y)
so that ¢(X) = (y) = constt.

2. The function f, whose real part is u is determined uniquely
up to purely imaginary constant (Since harmonic
conjugate v of u is unique up to areal constant, f=u +iv is
uniquely determined up to a purely imaginary constant.)



Examples.

1. u(x,y) = x* — y°.
Since, U, (X, Y) =2X, U, (X, y) =-2y, the harmonic conjugate is

y X
v(X,Y) = jux(x,t) dt—juy(s,O) ds
0 0

y X
:_[ZX dt—jO ds =2xy.
0 0

2. U(x,y)=2xy.
Since U,(X,Y) =2y, u,(X,y)=2X, the harmonic conjugate is

v(X,y) = }ux(x,t) dt—juy(s,O) ds
0 0

y X
:th dt—st ds = y* — x°.
0 0

The corresponding analytic function is
f(z) =2xy +i(y* —x°)
= —i((x* — y°) + 2ixy)

— —jz?

12
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Other Methods to find Harmonic Conjugates

Method 2. If u is harmonic in a region contained in {z: z > 0}
(i.e., x > 0, y > O or first quadrant) and homogenous of degree

m, m#0, i.e. for any t > 0, u(tz) =t"u(z), then v :i(yux — XUy )
m

is a conjugate harmonic function of w.

Proof. Since u(X,y) is a homogenous function, by Euler’s
Formula (see the derivation after this proof),

1
u(x,y) = H(Xux + yuy)

1
To show that v=—(yu, —xu, ) is the harmonic conjugate.
m

It is easily verified that

1
u, :H(ux + XU, + yuyx)

1
Vy :E(ux + YU,y — XUy )

= u, =V, (since, u,, is continuous and u satisfies Laplace’s

equation.

The equation u, = -V, is verified similarly.
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Example. Find an analytic function whose real part is
u(x,y) = x* - y* +xy.

The function u is homogenous of degree 2 and harmonic for all
z =X +1y. Therefore, by Method 1 above,

1
V(% y) = Z1y(2x+y) = x(=2y + X)]
B 1,2 2
=2xy+-(y"=x%)
2
The corresponding analytic function is therefore

f(z)=u+iv= (1—%i)22.



15
Derivation of Euler’s Formula for Homogenous Functins:

ou ox"  ou oy’
_|_

= mt™u(z),
ox' ot oy' ot

%(u(tz)) =mt"*(u(z2)) =

wherex' =tx,y' =ty.

Now, make t — 1 and use continuity of u, to get

u(x"+h)—u(x) N u(x+h)—-u(x)

u, —>u, and u, —>uy ( - -

)

asx'—>xand y >y
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Method 3 (Milne-Thompson Method: A completely informal
method). Let u(x,y) be a given Harmonic function.

e In the given expression of u(x, y), put x = % y = 21 (1) and
|

consider g(z) = ZU(E,A_) — (0).
2 2l

e The imaginary part of g(z) is the desired harmonic
conjugate of u(x,y).

Example. u(x,y) = x> — y°

Using Milne-Thompson method,
Z Z
f(z)=2u(=,—)-u(0,0
(2) =2u(=, )~ u(0,0)

AYENERY: 2
[(5)" = ()]
Thus the desired harmonic conjugate is

v(x,y)=1Im f(z)=2xy.
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Informal Justification of Milne-Thompson Method:

Let v(X,y) be a Harmonic conjugate of the given Harmonic
function u(X,y) and g=u+iv be the corresponding analytic

function,

Denote, 9 — 1(i —1 g) . Then,
oz 2 ox oy

0 —— 0 : 0 .0 :
Eg(z):E(u_lv):(&_la)(u_“’)
- %[ux—ivx—i(uy—iVy)]
:%[Ux—ivx_iuy_vy]

:%[uX =V, —i(v, +uy)]

=0 (1)
Informally assuming that z,Z are independent variables (!),
deduce from (1) that f(z) is independent of z, i.e. it is a
function of Zalone, i.e. g(z)=g (zZ) (say).
1 _
= u(xy)=719(2)+9(2)]

=§[g(z)+g*(7)] 2)
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In (2), z = x + iy, where, x and y are real. Let us informally
assume that (2) holds as well with x and y complex (!) and put

Then, (2) gives

u( )=§[g(z)+g*(0)] (since 7 = x—iy =2 i = =0)

Lz
2 2i 2i
1 __
= E[g(z) +9(0)] (3)
Equation (3) = g(z) = 2u(§,§) - g(0)
|
= 2u(%, <)~ u(0,0)+u(0,0) - g(0)

2 2l

Since u(0,0)— f(0) is a purely imaginary constant, it can be

dropped from the above expression (since harmonic
conjugates are unique only up to an imaginary constant).

:g(z>=2u<§§)—ﬁo>

is an analytic function whose real part is u(x,y).

The imaginary part of g(z) is therefore the desired harmonic
conjugate of u(x,y).



