Lecture 5

Power Series

A series of the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

is called a power series. The complex numbers a_n 's are called the *coefficients* and z_0 is called the *centre* of the power series.

For what values of z a power series converges?

To answer this question, we first review the definition and basic properties of lim sup & lim inf of a sequence $\{x_n\} \subseteq \mathbf{R}$.

Definition.

 $\limsup_{(inf)} x_n = \sup_{(inf)} \{set \ of \ all \ limit \ points \ of \ sequence \ \{x_n\}\}.$

Basic Properties:

1. lim sup & lim inf always exist, these may possibly be $+\infty \text{ or } -\infty$.

2. lim sup & lim inf are unique

3. lim inf $x_n \leq \lim \sup x_n$.

The following additional properties of lim sup & lim inf are used for derivation of the results concerning radius of convergence of a power series:

Proposition. For any bounded sequence $\{x_n\} \subseteq \mathbf{R}$

$$\begin{split} \limsup_{n \to \infty} x_n &= L \Leftrightarrow \text{ for any } \varepsilon > 0, \ x_n < L + \varepsilon \text{ for all } n > n_0(\varepsilon) \\ & x_{n_k} > L - \varepsilon \text{ for some subsequence } \{x_{n_k}\} \text{ of } \{x_n\} \\ & \liminf_{n \to \infty} x_n = l \Leftrightarrow \text{ for any } \varepsilon > 0, \ x_n > l - \varepsilon \text{ for all } n > n_0(\varepsilon) \\ & x_{n_k} < l + \varepsilon \text{ for some subsequence } \{x_{n_k}\} \text{ of } \{x_n\} \end{split}$$

***Proof.** We prove the theorem only for lim sup, the proof for lim inf can be constructed similarly.

(i) $\limsup x_n = L \Longrightarrow L - \varepsilon < x_n < L + \varepsilon$ for a subsequence $\{n_k\}$

All but finitely many x_n 's $L-\varepsilon$ L $L+\varepsilon$ Contains infinitely many x_n 's

Suppose $x_n < L + \varepsilon$ for all $n > n_0$ is false. $\Rightarrow x_n \ge L + \varepsilon_0$ for infinitely many n's and ε_0 \Rightarrow there exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \ge L + \varepsilon_0$ for all k

Since $\{x_{n_k}\}$ is a bounded sequence, it contains a convergent subsequence $\{x_{n_{k_l}}\}$. Let $x_{n_{k_l}} \to p_0$ as $l \to \infty$. Then, p_0 is a limit point of the sequence $\{x_n\}$.

By (*), $x_{n_{k_l}} \ge L + \varepsilon_0$ for every l $\Rightarrow p_0 \ge L + \varepsilon_0 \underset{(since\ Lis\ sup\ of\ all\ limit\ points)}{\Rightarrow} L \ge L + \varepsilon_0 \Rightarrow \#.$

('#' \equiv Notation for 'a contradiction')

(ii) Suppose no subsequence {x_{nk}} can be found satisfying
 x_{nk} > L − ε₀ for some ε₀.
 ⇒ infinitely many x_{nk} can never be greater than L − ε₀

 \Rightarrow every subsequence $\{x_{m_k}\}$ of x_n satisfies $x_{m_k} \leq L - \varepsilon_0$ for all $k > k_0$

 $\Rightarrow p \leq L - \varepsilon_0$ for all limit points $p \Rightarrow L \leq L - \varepsilon_0 \Rightarrow #$.

Proposition. $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n \text{ if and only if } \lim_{n \to \infty} x_n \text{ exists}$

***Proof.** Let $\lim_{n\to\infty} \sup x_n = L$, $\lim_{n\to\infty} \inf x_n = L$ and c = L = l. Then, by Proposition 1,

$$c - \varepsilon < x_n < c + \varepsilon \ \forall n > n_0 \Longrightarrow \lim_{n \to \infty} x_n = c.$$

Conversely, if $\lim_{n\to\infty} x_n = c$ exists, then the set of limit points of the sequence $\{x_n\}$ contains exactly one point c

 $\Rightarrow L = l = c$.

Examples

1.
$$x_n = \begin{cases} 1 + \frac{1}{n} & \text{if } n \text{ is even} \\ -1 + \frac{1}{n} & \text{if } n \text{ is odd} \end{cases}$$

For the sequence $\{x_n\}$, $\limsup x_n = 1$, $\liminf x_n = -1$.

2. For the sequence *{1,2,3,1,2,3,.....},*

$$x_{3n} = 3, x_{3n-1} = 2$$
 and $x_{3n-2} = 1$. Therefore,

$$\limsup x_n = 3$$
 and $\liminf x_n = 1$.

Radius of Convergence.

For the power series

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (1)

define a real number R by

$$\frac{1}{R} = \limsup_{n \to \infty} \left| a_n \right|^{1/n} \equiv L$$

and put $R = \infty$ if L = 0, R = 0 if $L = \infty$. The extended real number R is called the *radius of convergence* of the power series (1).

Note. The definition of radius of convergence can also be equivalently given as

$$R = \liminf_{n \to \infty} |a_n|^{-1/n} \quad (prove!)$$

The notion of radius of convergence easily describes all the points where (1) is convergent and all the points where (1) is not convergent.

Theorem 1. The power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges absolutely for all the points in $|z-z_0| < R$, is not convergent in $|z-z_0| > R$ and it converges uniformly in $|z-z_0| \le \rho < R$.

Proof.

(i) Let z be any arbitrary point in $|z - z_0| < R$. Assume that $|z - z_0| = r < R$. Let r_1 be such that $r < r_1 < R$. $\Rightarrow \frac{1}{r_1} > \frac{1}{R} = L$.

By Proposition 1 on lim sup, $|a_n|^{1/n} < \frac{1}{r_1}$ for all $n > n_0$.

$$\Rightarrow \sum_{n=0}^{\infty} |a_n| |z - z_0|^n = \sum_{n=0}^{\infty} |a_n| r^n < \sum_{n=0}^{\infty} (\frac{r}{r_1})^n$$

Since $\sum_{n=0}^{\infty} (\frac{r}{r_1})^n$ is cgt., by the comparison test $\sum_{n=0}^{\infty} |a_n| |z - z_0|^n$ is

convergent.

$$\Rightarrow \sum_{n=0}^{\infty} a_n (z-z_0)^n \text{ converges absolutely in } |z-z_0| < R.$$

(ii) If $|z-z_0| \le \rho$, then $|a_n||z-z_0|^n < (\frac{\rho}{r_1})^n$, where $\rho < r_1 < R$, and uniform convergence follows.

(iii) Let z be any arbitrary point in
$$|z - z_0| > R$$
.
Let, $|z - z_0| = r > R$ and r_2 be such that $r > r_2 > R$.
 $\Rightarrow \frac{1}{r_2} < \frac{1}{R} = L$.

By Proposition 1 on lim sup, there exists a subsequence $\{n_k\}$ such that $|a_{n_k}|^{1/n_k} > \frac{1}{r_2}$. $\Rightarrow |a_{n_k}||z-z_0|^{n_k} = |a_{n_k}|r^{n_k} > (\frac{r}{r_2})^{n_k}$. $\Rightarrow a_n(z-z_0)^n \neq 0$ as $n \rightarrow \infty$. $\Rightarrow \sum_{n=0}^{\infty} a_n(z-z_0)^n$ is not cgt. in $|z-z_0| > R$.

Corollary. If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges at z = b, then it converges in $|z-z_0| < |b-z_0|$.

The following theorem gives that the function represented by a power series is analytic in its disk of convergence:

Theorem 2. If the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ is R, then

(a) radius of convergence of the series

$$\sum_{n=k}^{\infty} n(n-1)...(n-k+1) a_n (z-z_0)^{n-k} \qquad (*)$$
is also R for every $k = 1, 2, ...$

(b) Define f by $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$, then f is infinitely many times differentiable in $|z-z_0| < R$.

(c)
$$\frac{f^{(k)}(z_0)}{|k|} = a_k, \ k = 1, 2, \dots$$

Proof.

Without loss of generality assume that $z_0 = 0$.

(*a*) Let radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ be R and radius of convergence of $\sum_{n=0}^{\infty} n a_n z^{n-1}$ be R'. We prove R = R'. The result for general k follows by induction.

Since,
$$\overline{\lim_{n\to\infty}} |n a_n|^{1/(n-1)} = \overline{\lim_{n\to\infty}} |a_n|^{1/(n-1)}$$
, radius of convergence of
 $\sum_{n=0}^{\infty} a_n z^{n-1}$ is also R' . Now, $|a_0| + \sum_{n=1}^{\infty} |a_n| |z|^n = |a_0| + |z| \sum_{n=1}^{\infty} |a_n| |z|^{n-1}$.
Series on RHS cgs in $|z| < R' \Rightarrow$ Series on LHS cgs in $|z| < R' \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series on RHS cgs in $|z| < R \Rightarrow$ Series cgs in $|z| <$

Therefore, R' = R.

(b) In |z| < R, define $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$. We prove: given $\varepsilon > 0, \exists \delta > 0$ such that $\left| \frac{f(z) - f(w)}{z - w} - g(w) \right| < \varepsilon$ whenever $|z - w| < \delta$.

Write, for all n,

$$\frac{f(z) - f(w)}{z - w} - g(w) = \left[\frac{S_n(z) - S_n(w)}{z - w} - S'_n(w)\right] + \left[S'_n(w) - g(w)\right] + \left[\frac{R_n(z) - R_n(w)}{z - w}\right]$$
where $S_n(z) = \sum_{k=0}^n a_k z^k$ and $R_n(z) = \sum_{k=n+1}^\infty a_k z^k$.
Let $|w| = r < R$. Then,
 $\left|\frac{R_n(z) - R_n(w)}{z - w}\right| \le \sum_{k=n+1}^\infty |a_k| \left|\frac{z^k - w^k}{z - w}\right|$
Choose ρ such that $r < \rho < R$, so that

$$\frac{z^{k} - w^{k}}{z - w} = \left| z^{k-1} + z^{k-2}w + \dots + z^{2}w^{k-2} + w^{k-1} \right|$$

$$< k\rho^{k-1} \quad in \quad |z - w| < \delta_{1} \subseteq |z| < \rho$$

$$\Rightarrow \left| \frac{R_{n}(z) - R_{n}(w)}{z - w} \right| \le \sum_{k=n+1}^{\infty} k \left| a_{k} \right| \rho^{k-1}$$

$$< \varepsilon / 3 \quad \forall n > n_{1}(\varepsilon) \quad and \quad |z - w| < \delta_{1} \qquad (2)$$

Next,

$$\lim_{n \to \infty} S'_n(w) = g(w) \Longrightarrow \left| S'_n(w) - g(w) \right| < \varepsilon / 3 \quad \text{for } \forall n > n_2(\varepsilon)$$
(3)

Let $n_0 = \max(n_1, n_2)$. Take $N > n_0$. Choose $\delta_2 > 0$ such that

$$\left|\frac{S_N(z) - S_N(w)}{z - w} - S'_N(w)\right| < \varepsilon / 3 \quad \text{for } 0 < |z - w| < \delta_2 \subseteq |z| < \rho \quad (4)$$

Write (1) as

$$\frac{f(z) - f(w)}{z - w} - g(w) = \left[\frac{S_N(z) - S_N(w)}{z - w}\right] + \left[S'_N(w) - g(w)\right] + \left[\frac{R_N(z) - R_N(w)}{z - w}\right]$$

which, in view of (2), (3) and (4) implies that

$$\left|\frac{f(z) - f(w)}{z - w} - g(w)\right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \forall z \text{ in } 0 < |z - w| < \delta = \min(\delta_1, \delta_2)$$
$$\Rightarrow f'(w) = g(w)$$

 \Rightarrow f'(z) is given by a series of the form (*) with k = 1 and $z_0 = 0$.

Since (*) with k = 1 has radius of convergence R, the above arguments give that f''(w) exists and is given by $\sum_{n=2}^{\infty} n(n-1)a_n(z-z_0)^{n-2}.$

An induction argument gives that $f^{(k)}(z)$ exists in |z| < R for all k = 1, 2, 3,..., and is given by (*) with $z_0 = 0$.

(c) Since $f^{(k)}(z)$ is given by a series of the form (*), put $z = z_0$ in (*) to give $a_k = \frac{f^{(k)}(z_0)}{|k|}$