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Lecture	5	

Power	Series	
	
A	series	of	the	form	

	 	 0
0

( )n
n

n

a z z




 	

is	called	a	power	series.	The	complex	numbers	 na ’s	are	called	
the	coefficients	and	 0z 	is	called	the	centre	of	the	power	series.		
	



 2

For	what	values	of	z	a	power	series	converges?		
	
To	answer	this	question,	we	first	review	the	definition	and	
basic	properties	of		lim	sup	&	lim	inf	of	a	sequence	{ }nx  	R.	
	
Definition.	
	
	 	

(inf) (inf)
limsup sup{ { }}n nx set of all limit points of sequence x .	

	
Basic	Properties:	
	
1. lim	sup	&	lim	inf	always	exist,	these	may	possibly	be	

.or  	
	
2. lim	sup	&	lim	inf	are	unique	

	
3. lim	inf	 nx  	lim	sup	 nx .	
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The	 following	 additional	 properties	 of	 lim	 sup	 &	 lim	 inf	 are	
used	 for	 derivation	 of	 the	 results	 concerning	 radius	 of	
convergence	of	a	power	series:	
	
Proposition	.	For	any	bounded	sequence	{ }nx  	R	
	

0lim sup 0, ( )

{ } { }
k k

n n
n

n n n

x L for any x L for all n n

x L for some subsequence x of x

  




     

 
	

	
0liminf 0, ( )

{ } { }
k k

n n
n

n n n

x l for any x l for all n n

x l for some subsequence x of x

  




     

 
		

	
*Proof.	We	prove	the	theorem	only	for	lim	sup,	the	proof	for	
lim	inf	can	be	constructed	similarly.	
	
(i)	

0{ }
limsup

k
n n

for a subsequence n for all n n
x L L x L 


      	

	
	
	
	
	
	
Suppose	 0nx L for all n n   	is	false.	

0 0'nx L for infinitely many n s and    	

LL   

All	but	finitely	many  'nx s  

Contains	infinitely	many  'nx s  

L   
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0{ }
k kn nthere exists a subsequence x such that x L for all k  

	 	
Since	{ }

knx 	is	a	bounded	sequence,	it	contains	a	convergent	

subsequence	{ }
kl

nx .	Let	 0kl
nx p as l  .	Then,	 0p 	is	a	limit	

point	of	the	sequence	 nx .	
	 By	(*),	 0kl

nx L for every l  	

	 										 0 0 0
( sup

)

#
since Lis of
all limit points

p L L L        .	

	
(‘# ’ 	Notation	for	‘a	contradiction’)	
	
(ii)	Suppose	no	subsequence	{ }

knx 	can	be	found	satisfying		

0knx L   	for	some	 0 .	
					 0kninfinitely many x can never be greater than L   	

					
0 0{ }

k km n mevery subsequence x of x satisfies x L for all k k    	

						
0 0 #p L for all limit points p L L        .	
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Proposition.	limsup liminfn n
nn

x x


 	if	and	only	if	 lim n
n

x


	exists	

	
*Proof.	Let	 lim sup n

n
x L


 ,		 lim inf n

n
x L


 	and	c L l  .	Then,	by	

Proposition	1,		
	 	 	 	 		 		 	 	 	 	

0 lim .n n
n

c x c n n x c 


        	

	
Conversely,	 if	 lim n

n
x c


 	 exists,	 then	 the	 set	 of	 limit	 points	 of	

the	sequence{ }nx 	contains	exactly	one	point	c	
	

L l c   .		
	
Examples	

1.	

1
1

1
1

n

if n is even
nx

if n is odd
n

  
 


		

	
For	the	sequence	{ }nx ,	limsup 1, liminf 1n nx x   .		
	
2.	For	the	sequence	{1,2,3,1,2,3,…………….},	
	
	 3 3 1 3 23, 2 1n n nx x and x    .	Therefore,	
	
	 limsup 3 liminf 1.n nx and x  	
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Radius	of	Convergence.		
	
For	the	power	series		

	 	 0
0

( ) (1)n
n

n

a z z




 	

define	a	real	number	R	by	
	

	 	 1/1
limsup

n
n

n
a L

R 
  	

	
and	 put	 0, 0R if L R if L      .	 The	 extended	 real	
number	 R	 is	 called	 the	 radius	 of	 convergence	 of	 the	 power	
series	(1).		
	
Note.	 The	 definition	 of	 radius	 of	 convergence	 can	 also	 be	
equivalently	given	as	
	

	 	 1/
liminf

n
n

n
R a




 					(prove!)	
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The	 notion	 of	 radius	 of	 convergence	 easily	 describes	 all	 the	
points	where	(1)	is	convergent	and	all	the	points	where	(1)	is	
not	convergent.	

Theorem	 1.	 The	 power	 series	 0
0

( )n
n

n

a z z




 	 converges	

absolutely	for	all	the	points	in	 0 ,z z R  is	not	convergent	in	

0z z R  	and	it	converges	uniformly	in	 0z z R   .	
	
Proof.	
	
(i)	 Let	 z	 be	 any	 arbitrary	 point	 in	 0z z R  .	 Assume	 that	

0z z r R   .	Let	 1r 	be	such	that	 1 .r r R  	

	 	
1

1 1
.L

r R
   	

By	Proposition	1	on	lim	sup,	 1/

1

1n
na

r
 	for	all	 0n n .	

	 0
10 0 0

< ( )   
n n n

n n
n n n

r
a z z a r

r

  

  

     .	

	

Since	
10

( )n

n

r

r




 	 is	 cgt.,	 by	 the	 comparison	 test	 0

0

n
n

n

a z z




 	 is	

convergent.	

0
0

( )n
n

n

a z z




  	converges	absolutely	in	 0z z R  .		
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(ii)	 If	 0z z   ,	 then	 0 1
1

( ) ,
n n

na z z where r R
r

     ,	

and	uniform	convergence	follows.	
	
(iii)	Let	z	be	any	arbitrary	point	in	 0 .z z R  	
Let,	 0z z r R   	and	 2r be such	that	 2r r R  .		

2

1 1
.L

r R
   	

By	 Proposition	 1	 on	 lim	 sup,	 there	 exists	 a	 subsequence	

{ }kn such	that		
1/

2

1k

k

n

na
r

 .	

	 0
2

( )   k k k
k k

n n n
n n

r
a z z a r

r
    .	

0( ) 0n
na z z   	 as	 n  . 	 0

0

( )n
n

n

a z z




 	 is	 not	 cgt.	 in	

0z z R  .	
	

Corollary.	 If	a	power	 series	 	 0
0

( )n
n

n

a z z




 	 converges	at	 z	=	b,	

then	it	converges	in	
0 0z z b z   .	
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The	 following	 theorem	gives	 that	 the	 function	represented	by	a	
power	series	is	analytic	in	its	disk	of	convergence:	
	
Theorem	 2.	 If	 the	 radius	 of	 convergence	 of	 the	 power	 series		

0
0

( )n
n

n

a z z




 	is	R,	then	

	
(a) radius	of	convergence	of	the	series	

	 	 0( 1)...( 1) ( )n k
n

n k

n n n k a z z






    	 	 (*)	

	 is	also	R	for	every	k	=	1,	2,	…	
	

(b) Define	 f	 by	 f(z)	 =	 	 0
0

( )n
n

n

a z z




 ,	 then	 f	 is	 infinitely	many		

times	differentiable	in	 0| |z z R  	.	
	

(c) 
( )

0( )
, 1,2,...

k

k
f z

a k
k

  	.	
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Proof.		
	
Without	loss	of	generality	assume	that	 0 0z  .		
	

(a) Let	radius	of	convergence	of	 	
0

n
n

n

a z



 	be	R	 	and	radius	of	

convergence	of	 1

0

n
n

n

na z





 	be	 R.	We	prove	 R R .	The	result	

for	general	k	follows	by	induction.		
	

Since,	
____ ____

1/( 1) 1/( 1)
lim lim

n n
n n

n n
na a

 

 
 ,	 radius	 of	 convergence	 of		

1

0

n
n

n

a z





 	is	also	R.	Now,	 1

0 0
1 1

n n
n n

n n

a a z a z a z
 



 

    .	

	
Series	 on	 RHS	 cgs	 in	 z R  	 Series	 on	 LHS	 cgs	 in	
z R R R  	
Series	 on	 LHS	 cgs	 in	 z R  	 Series	 on	 RHS	 cgs	 in	
z R R R  .	
	
Therefore,	R R  .	
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(b) In	 z R ,	 define	 1

0 1

( ) , ( )n n
n n

n n

f z a z g z na z
 



 

   .	 We	

prove:	
given 0, 0 such that   

( ) ( )
( )

f z f w
g w whenever z w

z w
 

   


.		

	
Write,	for	all	n,	
	

		

( ) ( )( ) ( )
( ) [ ( )] [ ( ) ( )]

( ) ( )
[ ]

n n
n n

n n

S z S wf z f w
g w S w S w g w

z w z w
R z R w

z w

      
 






	(1)								

where	
0 1

( ) ( )
n

k k
n k n k

k k n

S z a z and R z a z


  

   .	

Let	 w r R  .	Then,		

	 	
1

( ) ( ) k k
n n

k
k n

R z R w z w
a

z w z w



 

 


  	

Choose	 	such	that	r R  ,	so	that	

	
1 2 2 2 1

1
1

...
k k

k k k k

k

z w
z z w z w w

z w

k in z w z  

   




    


    

	

1

1

( ) ( ) kn n
k

k n

R z R w
k a

z w





 


 

  	

1 1/ 3 ( )n n and z w       															(2)	

0  

w    

r  

 R   
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Next,		
	

2lim ( ) ( ) ( ) ( ) / 3 ( ) (3)n n
n

S w g w S w g w for n n 


       	

	
Let	 0 1 2max( , )n n n .	Take	 0N n .	Choose	 2 0  	such	that	
	

2
( ) ( )

( ) / 3 0N N
N

S z S w
S w for z w z

z w
         


					(4)	

	
Write	(1)	as	
	

	

( ) ( )( ) ( )
( ) [ ] [ ( ) ( )]

( ) ( )
[ ]

N N
N

N N

S z S wf z f w
g w S w g w

z w z w
R z R w

z w

    
 






	

	
which,	in	view	of	(2),	(3)	and	(4)	implies	that	
	

1 2
( ) ( )

( ) 0 min( , )
3 3 3

f z f w
g w z in z w

z w

     
        


	

	
( ) ( )f w g w  	

									
( )f z 	is	given	by	a	series	of	the	form	(*)	with	 1k  	and	 0 0z  .		

	



 13

Since	 (*)	 with	 1k  	 has	 radius	 of	 convergence	 R,	 the	 above	
arguments	 give	 that	 ( )f w 	 exists	 and	 is	 given	 by	

2
0

2

( 1) ( )n
n

n

n n a z z






  .	

An	induction	argument	gives	that	 ( ) ( )kf z 	exists	in	 z R 	for	all	
k	 =	 1,	 2,	 3,....,	 and	 is	 given	 by	 (*)	 with	 0 0z  .	
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(c) Since	 ( ) ( )kf z 	 is	 given	 by	 a	 series	 of	 the	 form	 (*),	 put	

0z z in	(*)	to	give	
( )

0( )k

k
f z

a
k

  


