Lecture 6

To Find Radius of Convergence From Ratio of Consecutive Terms $\left|a_{n} / a_{n-1}\right|$ of the Power Series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{\lambda_{n}}, a_{n} \neq 0$ for all n.

The formula for radius of convergence in terms of $\left|a_{n-1} / a_{n}\right|$ does not work if $a_{n}=0$ for infinitely many n's.

The Series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{\lambda_{n}}$ with $a_{n} \neq 0$ for all nis called a Power Series with Gaps, if $\lambda_{n} \neq n$.

Theorem 3.

If $\lim _{n \rightarrow \infty}\left|a_{n} / a_{n-1}\right|^{1 /\left(\lambda_{n}-\lambda_{n-1}\right)}$ exists, then $\frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n} / a_{n-1}\right|^{1 /\left(\lambda_{n}-\lambda_{n-1}\right)}$, where R is the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{\lambda_{n}}, a_{n} \neq 0$ for all n and $\left\{\lambda_{n}\right\}$ is any increasing $n=0$
sequence of non-negative integers such that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Let $\lim _{n \rightarrow \infty} \sup$ inf $\left|a_{n} / a_{n-1}\right|^{1 /\left(\lambda_{n}-\lambda_{n-1}\right)}=B_{A^{*}}^{*}$. Then,
$\left(A^{*}-\varepsilon\right)^{\lambda_{n}-\lambda_{n-1}}<\left|a_{n} / a_{n-1}\right|<\left(B^{*}+\varepsilon\right)^{\lambda_{n}-\lambda_{n-1}}$ for all $n>n_{0}$.
$\Rightarrow\left|a_{n_{0}}\right|\left(A^{*}-\varepsilon\right)^{\lambda_{n}-\lambda_{n_{0}}}<\left|a_{n}\right|<\left|a_{n_{0}}\right|\left(B^{*}+\varepsilon\right)^{\left(\lambda_{n}-\lambda_{n-1}\right)+\ldots \ldots . .+\left(\lambda_{n_{0}+1}-\lambda_{n_{0}}\right)}$
(since $\left|a_{n}\right|=\left|a_{n_{0}}\right|\left|\frac{a_{n_{0}+1}}{a_{n_{0}}}\right| \ldots\left|\frac{a_{n}}{a_{n-1}}\right|$)
$\Rightarrow \liminf _{n \rightarrow \infty}\left|a_{n}\right|^{1 / \lambda_{n}} \geq A^{*}$ and $\limsup \left|a_{n \rightarrow \infty}\right|^{1 / \lambda_{n}} \leq B^{*}$.

Since, $\lim _{n \rightarrow \infty}\left|a_{n} / a_{n-1}\right|^{1 /\left(\lambda_{n}-\lambda_{n-1}\right)}$ exists, $A^{*}=B^{*}$.
$\Rightarrow \lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / \lambda_{n}}$ exists and $\frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / \lambda_{n}}=\lim _{n \rightarrow \infty}\left|a_{n} / a_{n-1}\right|^{1 /\left(\lambda_{n}-\lambda_{n-1}\right)}$

Example. $\sum_{n=0}^{\infty} \frac{1}{2^{n}}\left(z-z_{0}\right)^{n^{2}}$.

The radius of convergence R of the above power series is given by

$$
\begin{aligned}
\frac{1}{R} & =\lim _{n \rightarrow \infty}\left(\frac{2^{n-1}}{2^{n}}\right)^{1 /\left(n^{2}-(n-1)^{2}\right)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{1 /(2 n+1)}=1
\end{aligned}
$$

Radius of Convergence of Product of Power Series

Let

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { has radius of convergence } R_{1} \\
& \text { and } \\
& \sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n} \text { has radius of convergence } R_{2}
\end{aligned}
$$

Hadamard Product: $\sum_{n=0}^{\infty} a_{n} b_{n}\left(z-z_{0}\right)^{n}$ is called the Hadamard
Product of the above two power series.

Let R^{*} be its radius of convergence.

Since, limsup $\left|a_{n} b_{n}\right|^{1 / n} \leq \limsup \left|a_{n}\right|^{1 / n} \limsup \left|b_{n}\right|^{1 / n} \quad$ (prove!)

$$
\Rightarrow \frac{1}{R^{*}} \leq \frac{1}{R_{1} R_{2}} \Rightarrow R^{*} \geq R_{1} R_{2} \geq\left[\min \left(R_{1}, R_{2}\right)\right]^{2}
$$

*Cauchy Product:

The power series $\sum_{n=0}^{\infty}\left(a_{0} b_{n}+\ldots+a_{n} b_{0}\right)\left(z-z_{0}\right)^{n}$
is called the Cauchy Product of the above two Power series. Let R be its radius of convergence.

Proposition. If the radius of convergence of

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is } R_{1} \text { and radius of convergence of } \\
& g(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n} \text { is } R_{2}, \text { then the radius of convergence of }
\end{aligned}
$$ their Cauchy product is $R=\min \left(R_{1}, R_{2}\right)$.

Proof. WLOG assume that $z_{0}=0$.
Let $S_{n}(z)$ be $n^{\text {th }}$ partial sum $\sum_{k=0}^{n} a_{k} z^{k}$
$T_{n}(z)$ be $n^{\text {th }}$ partial sum $\sum_{k=0}^{n} b_{k} z^{k}$
$P_{n}(z)$ be $n^{\text {th }}$ partial sum $\sum_{k=0}^{n}\left(a_{0} b_{k}+\ldots+a_{k} b_{0}\right) z^{k}$.
To show: If $f(z)$ is limit of (1) as $n \rightarrow \infty$ and $g(z)$ is limit of (2) as $n \rightarrow \infty$, then $\left(^{*}\right)$ has the sum $f(z) \cdot g(z)$ in $\left|z-z_{0}\right|<R=\min \left(R_{1}, R_{2}\right)$, where R_{1} is the radius of convergence for power series of $f(z)$ and R_{2} is the radius of convergence for power series of $g(z)$.

Now,

$$
\begin{aligned}
& P_{n}(z)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) z+\ldots+\left(a_{0} b_{n}+\ldots+a_{n} b_{0}\right) z^{n} \\
& \quad=a_{0} T_{n}(z)+a_{1} T_{n-1}(z) z+\ldots+a_{n} T_{0}(z) z^{n} \\
& =a_{0}\left(\varepsilon_{n}(z)+g(z)\right)+a_{1}\left(\varepsilon_{n-1}(z)+g(z)\right) z+\ldots+a_{n}\left(\varepsilon_{0}(z)+g(z)\right) z^{n}, \\
& \text { where } \varepsilon_{n}(z)=T_{n}(z)-g(z) \Rightarrow T_{n}(z)=\varepsilon_{n}(z)+g(z) \\
& \quad=\left[S_{n}(z) g(z)\right]+\left[a_{0} \varepsilon_{n}(z)+a_{1} \varepsilon_{n-1}(z) z+\ldots+a_{n} \varepsilon_{0}(z) z^{n}\right] .
\end{aligned}
$$

Since, $\varepsilon_{n}(z) \rightarrow 0$ as $n \rightarrow \infty$ in $|z|<R_{2},\left|\varepsilon_{n}(z)\right|<\varepsilon \forall n>N$ and further $\alpha(z)=\sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}<\infty$ in $|z|<R_{1}$,

$$
\left|\gamma_{n}(z)\right|=\left|a_{0} \varepsilon_{n}(z)+a_{1} z \varepsilon_{n-1}(z)+\ldots+a_{n} z^{n} \varepsilon_{0}(z)\right|
$$

$$
\leq\left|a_{n} z^{n} \varepsilon_{0}(z)+\ldots+a_{n-N} z^{n-N} \varepsilon_{N}(z)\right|
$$

$$
+\left|a_{n-(N+1)} z^{n-(N+1)} \varepsilon_{N+1}(z)+\ldots+a_{0} \varepsilon_{n}(z)\right|
$$

$$
<\left|a_{n} z^{n} \varepsilon_{0}(z)+\ldots+a_{n-N} z^{n-N} \varepsilon_{N}(z)\right|
$$

$$
+\varepsilon \alpha(z)
$$

$\Rightarrow \lim _{n \rightarrow \infty}\left|\gamma_{n}(z)\right| \leq \varepsilon \alpha(z) \quad\left(\right.$ since $a_{n} z_{n} \rightarrow 0$ as $\left.n \rightarrow \infty\right)$
$\Rightarrow \lim _{n \rightarrow \infty} \gamma_{n}(z)=0, \quad($ since ε is arb.)
$\Rightarrow \lim _{n \rightarrow \infty} P_{n}(z)=\lim _{n \rightarrow \infty} S_{n}(z) g(z)=f(z) \cdot g(z)$.

Complex Integration

Let $C: z(t), a \leq t \leq b$, be a continuously differentiable curve, i.e. $z(t)$ is a continuously differentiable function in $[a, b]$.

For any partition
$\left\{a=t_{0}, t_{1}, \ldots, t_{m-1}, t_{m}=b\right\}$ of $[a, b]$,
let $z\left(t_{j}\right)=z_{j}, j=0,1, \ldots, m$

Let the function $f: \boldsymbol{C} \rightarrow \boldsymbol{C}$ be continuous on the curve C.
Consider the sum $S_{n}=\sum_{m=1}^{n} f\left(\varsigma_{m}\right)\left(z_{m}-z_{m-1}\right)$
where, ς_{m} is any point on the curve lying between z_{m-1} and z_{m}.

Definition. Complex Integration of f on C is defined as

$$
\int_{C} f(z) d z=\lim _{n \rightarrow \infty} S_{n} \text {, provided } \max _{1 \leq m \leq n}\left|\Delta z_{m}\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Equivalently, using the definition of integral of real functions,

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) \dot{z}(t) d t . \tag{*}
\end{equation*}
$$

Note. The definition (*) is independent of the parametric representation of C. For if $w(t), c \leq t \leq d$, is another parametric representation of C. Let $\varphi:[c, d] \rightarrow[a, b]$ be oneone onto differentiable function such that $\varphi(c)=a, \varphi(d)=b$ and $w(t)=z(\varphi(t))$. Then,

$$
\int_{c}^{d} f(w(t)) \dot{w}(t) d t=\int_{c}^{d} f(z(\varphi(t))) \dot{z}(\varphi(t)) \dot{\varphi}(t) d t
$$

$$
=\int_{\varphi(c)}^{\varphi(d)} f(z(x)) \dot{z}(x) d x=\int_{a}^{b} f(z(x)) \dot{z}(x) d x
$$

For studying the properties of integration of a function $f: \boldsymbol{C} \rightarrow \boldsymbol{C}$, we need the definition and properties of a function $F:[a, b] \rightarrow \boldsymbol{C}$.

Integration of Functions $F:[a, b] \rightarrow \boldsymbol{C}$
Let $F(t)=u(t)+i v(t), a \leq t \leq b$. Define,

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Properties.

(i) $\operatorname{Re} \int_{a}^{b} F(t) d t=\int_{a}^{b} \operatorname{Re} F(t) d t$
(ii) $\int_{a}^{b} \gamma F(t) d t=\gamma \int_{a}^{b} F(t) d t, \gamma=a$ complex constant
(iii) $\left|\int_{a}^{b} F(t) d t\right| \leq \int_{a}^{b}|F(t)| d t$

Proof: (i) and (ii) immediately follow from the definition.
(iii) Let $r_{0} e^{i \theta_{0}}=\int_{a}^{b} F(t) d t$. Then,

$$
\begin{aligned}
r_{0} & =\int_{a}^{b} e^{-i \theta_{0}} F(t) d t \\
& =\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} F(t)\right) d t \quad \quad \text { (using (i)) } \\
& \leq \int_{a}^{b} e^{-i \theta_{0}} F(t)\left|d t=\int_{a}^{b}\right| F(t) \mid d t \quad \text { (using property of real integral) }
\end{aligned}
$$

Properties of Complex Integration $\int_{C} f(z) d z$
(1) $\int_{-C} f(z) d z=-\int_{C} f(z) d z$ (use that if parametric rep. of C is $z(t), a \leq t \leq b$, then parametric rep. of $-C$ is $z(-t):-b \leq t \leq-a$ or, alternatively, $z(b+(a-t)): a \leq t \leq b)$
(2) $\int_{C} \gamma f(z) d z=\gamma \int_{C} f(z) d z \quad$ (easily follows from definition)
(3)
$\int_{C}(f+g) d z=\int_{C} f d z+\int_{C} g d z \quad$ (follows easily from definition)
(4) If C_{1} is continuous curve from α_{1} to β_{1}, C_{2} is a continuous curve α_{2} to β_{2} and $\beta_{1}=\alpha_{2}$ and the curve C is union of curves C_{1} and C_{2}, then

$$
\int_{C} f(z) d z=\int_{C_{1}} f d z+\int_{C_{2}} f d z
$$

(5) $\left|\int_{C} f(z) d z\right| \leq M L$, where L is the length of C and
$|f(z)| \leq M$ for $z \in C$.
(The property (5) is called ML-Estimate of the integral).

Proof (4):

Let $C_{1}: z_{1}(t), 0 \leq t \leq 1$ and $C_{2}: z_{2}(t), 0 \leq t \leq 1$.
Then, $C=z(t)$, where $z(t)=\left\{\begin{array}{l}z_{1}(2 t), 0 \leq t \leq 1 / 2 \\ z_{2}(2 t-1), 1 / 2 \leq t \leq 1\end{array}\right.$
Therefore,

$$
\begin{aligned}
& \begin{aligned}
\int_{C} f(z) d z & =\int_{0}^{1} f(z(t)) \dot{z}(t) d t \\
& =\int_{0}^{1 / 2} f(z(t)) \dot{z}(t) d t+\int_{1 / 2}^{1} f(z(t)) \dot{z}(t) d t
\end{aligned} \\
& =\int_{0}^{1 / 2} f\left(z_{1}(2 t)\right)\left(\dot{z}_{1}(2 t) \cdot 2\right) d t+\int_{1 / 2}^{1} f\left(z_{2}(2 t-1)\right)\left(\dot{z}_{2}(2 t-1) .2\right) d t \\
& =\int_{0}^{1} f\left(z_{1}(t)\left(\dot{z}_{1}(t) .\right) d t+\int_{0}^{1} f\left(z_{2}(t) \dot{z}_{2}(t) d t\right.\right. \\
& =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
\end{aligned}
$$

Proof (5):

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| & \leq \int_{a}^{b} \mid f(z(t)| | \dot{z}(t) \mid d t \\
& \leq M \int_{a}^{b}|\dot{z}(t)| d t=M L
\end{aligned}
$$

Example 1: Show that
$\left|\int_{C} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}$, where C : The line segment joining i and 1 .
Solution:
$L=$ length of $C=\sqrt{2}$
On C, $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+(1-x)^{2}}$

$\Rightarrow|z|^{4}=\left(x^{2}+(1-x)^{2}\right)^{2}=\left(2 x^{2}-2 x+1\right)^{2}=\left[2\left(x-\frac{1}{2}\right)^{2}+\frac{1}{2}\right]^{2} \geq \frac{1}{4}$
Using Property 5, we now get the required estimate of the integral in Example 1.

