Lecture 7

Cauchy Theorem:

Let f be analytic inside and on a simple, closed, piecewise smooth curve C. Then,\
\[
\int_C f(z) \, dz = 0.
\]

Definitions: Let $z(t)$, $a \leq t \leq b$, be parametric representation of the curve C.

Simple Curve: The curve C is said to be simple, if it does not have any self-intersections (i.e. $z(t_1) \neq z(t_2)$ whenever $t_1 \neq t_2$ ($a < t_1, t_2 < b$)).

Closed Curve: The curve C is said to be Closed, if end point of the curve is the same as its initial point (i.e. $z(a) = z(b)$).

Piece-wise smooth Curve: The curve C is said to be Piece-wise smooth, if $z(t)$ is piece-wise differentiable (i.e. differentiable for all except finitely many t) and $\frac{d}{dt} z(t)$ (denoted as $\dot{z}(t)$) is piece-wise continuous in the interval $[a, b]$.
Proof (Under the assumption that \(f'(z) \) is continuous on \(C \))

By Green’s Theorem,

\[
\oint_{C} P \, dx + Q \, dy = \iint_{R} \left(Q_x - P_y \right) \, dx \, dy,
\]

where, curve \(C \) is boundary of the region \(R \) and the first partial derivatives \(P, Q, Q_x, P_y \) exist and are continuous in \(C \cup R \).

The hypothesis of Cauchy Theorem implies that the conditions of Green’s Theorem are satisfied.

Now, \(\int_{C} f(z) \, dz = \int_{a}^{b} f(z(t)) \, \dot{z}(t) \, dt \)

\[
= \int_{a}^{b} (u + iv)(\dot{x}(t) + i\dot{y}(t)) \, dt
\]

\[
= \int_{a}^{b} (u\dot{x} - v\dot{y}) \, dt + i \int_{a}^{b} (u\dot{y} + v\dot{x}) \, dt
\]

\[
= \int_{C} ud\alpha - v\,d\beta + i \int_{C} u\,d\beta + v\,d\alpha
\]

\[
= -\iint_{R} \left(u_y + v_x \right) \, dx \, dy + i \iiint_{R} \left(u_x - v_y \right) \, dx \, dy
\]

\[
= 0
\]
The proof of Cauchy Theorem in the general case, where the continuity of $f'(z)$ is not assumed, is beyond the scope of this course.
Cauchy Theorem for Multiply Connected Domains (Domain with holes).

Let simple closed piece-wise smooth curves C_1,\ldots,C_n be enclosed by a simple, closed piece-wise smooth curve C, all the curves being oriented anticlockwise. Let D be domain with boundary curves C, C_1,\ldots,C_n (Such a domain is called a multiply connected domain). If a function $f(z)$ is analytic on $D \cup C \cup C_1 \cup \ldots \cup C_n$, then

$$\oint_C f(z)\,dz = \oint_{C_1} f(z)\,dz + \ldots + \oint_{C_n} f(z)\,dz.$$
Proof: Join C (oriented anticlockwise) and $C_1^*, ..., C_n^*$ (the curves $C_1, ..., C_n$ oriented clockwise) by straight line segment as shown in the figure for $n = 3$. Observe that with these orientations, D lies to left if one traverses along any of these curves.

Applying Cauchy Theorem to the simply connected domain bounded by the curve

$$
\Gamma = L_1 \cup C_1^{*u} \cup L_2 \cup C_2^{*u} \cup L_3 \cup C_3^{*u} \cup ... \cup L_n \cup C_n^* \cup
$$

$$
- L_n \cup C_{n-1}^{*l} \cup ... - L_3 \cup C_2^{*l} \cup - L_2 \cup C_1^{*l} - L_1 \cup C
$$

where, C_i^{*u} denotes the upper part of the curve C_i^* and C_i^{*l} denotes the lower part of the curve C_i^*(observe that Γ has positive orientation, since the domain bounded by it lies to its left when one traverses on Γ), it follows that
\[\oint_{C} f(z) \, dz + \oint_{C_1^*} f(z) \, dz + \ldots + \oint_{C_n^*} f(z) \, dz = 0 \]

(since the integrals along \(L_i \)'s are equal and opposite to each other)

\[\Rightarrow \oint_{C} f(z) \, dz = \oint_{C_1} f(z) \, dz + \ldots + \oint_{C_n} f(z) \, dz \]

Corollary. If \(f \) is analytic (i) on two simple, closed, piece-wise smooth curves \(C_1 \) and \(C_2 \) and (ii) inside the domain bounded by \(C_1 \) and \(C_2 \), then

\[\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz. \]

The above corollary helps in evaluation of integrals over curve \(C_1 \), the determination of whose parametric representation may be complicated. In such a case, the possibility of obtaining a curve \(C_2 \) satisfying the conditions of the corollary and whose parametric representation is simple to obtain, is explored and the integral is evaluated with the help of above corollary.
Example: Evaluate $\oint_{\Gamma} \frac{1}{w-z_0} \, dw$, where Γ is any anticlockwise oriented simple closed piecewise smooth curve and z_0 is a point lying in the bounded domain D with boundary Γ.

Note that direct evaluation of the above integral is not possible, since any explicit equation of Γ is not known. However, this integral could be simply evaluated by using the above theorem.

Consider any anticlockwise oriented circle $C_r : |w-z_0| = r$, with r small enough so that C_r lies in D. The function $\frac{1}{w-z_0}$ is analytic on the curves Γ and C_r and in the domain bounded by these curves. Therefore, by Cauchy Theorem for Multiply connected domains,

$$\oint_{\Gamma} \frac{1}{w-z_0} \, dw = \oint_{C_r} \frac{1}{w-z_0} \, dw = \int_0^{2\pi} \frac{1}{re^{it}} ire^{it} \, dt = 2\pi i$$

since, $w(t) = z_0 + re^{it}$, $0 \leq t \leq 2\pi$, is a parametric representation of the circle C_r.
Cauchy Integral Formula: If \(f \) is analytic in a domain \(G \) and \(\overline{B(a,r)} \subseteq G, \) where \(\overline{B(a,r)} = \{w : |w-a| \leq r\}. \) Then, for any \(z \in \{|w-a| < r\} \)

\[
f(z) = \frac{1}{2\pi i} \oint_{C_r} \frac{f(w)}{(w-z)} \, dw
\]

(1)

where, \(C_r : w(t) = z + re^{it}, \, 0 \leq t \leq 2\pi. \)

Proof: Consider a circle \(|w-z| = \delta^*\) centered at \(z \) and having radius \(\delta^* \) sufficiently small such \(|w-z| = \delta^* \) \(\subseteq \{|w-a| < r\}. \) Then, by Cauchy Theorem of Multiply Connected Domains,

\[
\oint_{C_r} \frac{f(w)}{(w-z)} \, dw = \oint_{|w-z|=\delta^*} \frac{f(w)}{(w-z)} \, dw
\]

since the integrand is an analytic function in the domain lying between \(C_r \) and \(|w-z| = \delta^*\). Now, note that

\[
\oint_{|w-z| = \delta^*} \frac{f(w)}{(w-z)} \, dw = \oint_{|w-z| = \delta^*} \frac{f(w) - f(z)}{(w-z)} \, dw + f(a) \oint_{|w-z| = \delta^*} \frac{1}{(w-z)} \, dw
\]

(*)

The second term of (*) = \(2\pi i f'(z)\). Therefore, Cauchy Integral Formula follows if we prove that the first term of (*) is zero.

For this use continuity of \(f(w) \) at 'z', which gives that for every \(\varepsilon > 0, \) there exists \(\delta > 0 \) such that \(|f(w) - f(z)| < \varepsilon \) whenever \(|w-z| < \delta\). Choose \(\delta^* < \delta\).
Then,

\[\left| \int_{|w-z|=\delta^*} \frac{f(w) - f(z)}{(w-z)} \, dw \right| < \frac{\varepsilon}{\delta^*} \times 2\pi \delta^* = 2\pi \varepsilon \quad \text{(by ML-Estimate)} \]

\[\Rightarrow \int_{|w-z|=\delta^*} \frac{f(w) - f(z)}{(w-z)} \, dw = 0 \quad \text{since } \varepsilon \text{ is arbitrary.} \]

Note: In view of Cauchy Theorem for multiply connected domains, Cauchy Integral Formula (1) remains valid with \(C_r \) replaced by any simple closed piece-wise smooth curve \(\Gamma \) so that (i) every point enclosed by \(\Gamma \) is in \(D \) (ii) \(\Gamma \) encloses the point \(z \). This is because the function \(f'(w)/(w-z) \) is analytic in the domain lying between \(C_r \) and \(\Gamma \).