Lecture 8

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

Taylor's Theorem: Let fbe analytic in a domain $D \& a \in D$. Then, $f(z)$ can be expressed as the power series

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} b_{n}(z-a)^{n} \tag{1}
\end{equation*}
$$

where, $b_{n}=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{r}} \frac{f(w-a)^{n+1}}{(w}=\frac{f^{(n)}(a)}{n!}, f^{(0)}(a) \equiv f(a)$,
where, $C_{r} \subset D$ is a counterclockwise oriented circle, of radius r and center at a, such that it encloses only points of D.

The representation (1) is unique and is valid in the largest open disk with center a, contained in D.

Proof: By using Cauchy Integral Formula and Cauchy Theorem For Multiply Connected Domains,

$$
f(z)=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{C_{\rho}}} \frac{1}{w-z} d w=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{C_{r}}} \frac{f-z}{} d w,
$$

where, z is any point enclosed by the circle C_{r} and C_{ρ} is a counterclockwise oriented circle $|w-z|=\rho$ with sufficiently small radius ρ such that C_{ρ} lies in the bounded domain enclosed by C_{r}.

Now,
$\frac{1}{w-z}=\frac{1}{(w-a)-(z-a)}=\frac{1}{w-a}\left[1-\frac{z-a}{w-a}\right]^{-1}$
Recall that,

$$
\begin{aligned}
& 1+q+\ldots+q^{n}=\frac{1-q^{n+1}}{1-q} \\
\Rightarrow & \frac{1}{1-q}=1+q+\ldots+q^{n}+\frac{q^{n+1}}{1-q}
\end{aligned}
$$

for any complex number q
Let $q=\frac{z-a}{w-a}$. Then,
$\frac{1}{w-z}=\frac{1}{w-a}\left[1+\frac{z-a}{w-a}+\ldots+\left(\frac{z-a}{w-a}\right)^{n}+\frac{1}{w-a} \frac{\left(\frac{z-a}{w-a}\right)^{n+1}}{1-\frac{z-a}{w-a}}\right]$
$\Rightarrow \frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)}{w-a} d w+(z-a) \frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)}{(w-a)^{2}} d w+\ldots$
$\ldots+(z-a)^{n} \frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)}{(w-a)^{n+1}} d w$
$+(z-a)^{n+1} \frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)}{(w-a)^{n+1}(w-z)} d w$
$R_{n}(z)$
where,

$$
\begin{aligned}
\left|R_{n}(z)\right| & <\frac{|z-a|^{n+1}}{2 \pi} \cdot \frac{M^{*}(r)}{r^{n+1}} \cdot 2 \pi r, \text { for } M^{*}(r)=\max _{w \in C_{r}}\left|\frac{f(w)}{w-z}\right| \\
& =r M^{*}(r)\left|\frac{z-a}{r}\right|^{n+1} \rightarrow 0 \text { as } n \rightarrow \infty, \text { since }\left|\frac{z-a}{r}\right|<1 .
\end{aligned}
$$

Thus, $f(z)=\sum_{n=0}^{\infty} b_{n}(z-a)^{n}$,
with $b_{n}=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{r}} d w$.

Further, since $f(z)$ is represented by power series, by a previous proposition on power series, $f(z)$ is infinitely many times

differentiable in $|z-a|<r$ and
$b_{n}=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{C_{r}}} \frac{f^{(n)}(a)}{n!}$.
Since $b_{n}=\frac{f^{(n)}(a)}{n!}$, it depends only on f and ' a ', so b_{n} 's are uniquely determined.
(because, if $f(z)=\sum_{n=0}^{\infty} b_{n}^{*}(z-a)^{n}, b_{n}^{*}=\frac{f^{(n)}(a)}{n!}=b_{n}$).
Thus, (1) represents f uniquely.

Proposition: Every function $f(z)$, analytic in a domain D, is infinitely many times differentiable in D.

Proof: $D=\underset{a \in D}{\cup}\left\{|z-a|<r_{a}\right\}$.

- By Taylor's Theorem, for every $a \in D, f(z)$ is represented by a power series in $|z-a|<r_{a}$.
- By an earlier proposition on power series, the functions represented by a power series are infinitely many times differentiable.

So that $f(z)$ is infinitely many times differentiable in $|z-a|<r_{a}$ for every $a \in D$.

Therefore, $f(z)$ is infinitely many times differentiable in D.

Cauchy Integral Formula for $\boldsymbol{n}^{\text {th }}$-derivative

If f is analytic in a domain D and $\overline{B(a, r)} \subseteq D$, where $\overline{B(a, r)}=\{w:|w-a| \leq r\}$. Then,

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \oint_{C_{r}} \frac{f(w)}{(w-a)^{n+1}} d w, n=0,1,2, \ldots \quad\left(^{*}\right)
$$

where, $\quad C_{r}: w(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$, is a counterclockwise oriented circle of radius r centred at a.

Proof: Follows immediately since, by the proof of Taylor's Theorem, $b_{n}=\frac{1}{2 \pi i} \oint \frac{f(w)}{C_{C_{r}}} d w=\frac{f^{(n)}(a)}{n!}$.

For $n=0$, denoting $f^{(0)}(a) \equiv f(a),\left(^{*}\right)$ becomes Cauchy Integral Formula.

Note: In view of Cauchy Theorem for multiply connected domains, formula (${ }^{*}$) remains valid with C_{r} replaced by any simple closed piece-wise smooth curve Γ so that (i) every point enclosed by Γ is in D (ii) Γ encloses the point a. This is because the function $f(w) /(w-a)^{n+1}$ is analytic in the domain lying between C_{r} and Γ.

Remark: The formula $\left(^{*}\right)$ gives the value of the function and its derivatives at any point enclosed by a simple closed piecewise differentiable curve Γ, if the values of the function on Γ are known.

This helps in knowing the values of the function and its derivatives at sometimes inaccessible points through values at accessible points.

A Computational Method, called Complex Variable Boundary Element Method, developed using (*), is a great tool to computationally generate the values of $f(a), f^{\prime}(a), f^{\prime \prime}(a), \ldots$ etc..

Deductions From Tayolor's Theorem:

Proposition 1: Every power series with nonzero radius of convergence is the Taylor series of the function represented by it.

Proof: Let (*) $\sum_{n=0}^{\infty} b_{n}(z-a)^{n}$ represents the function $f(z)$ in $|z-a|<R$, i.e. $f(z)=\sum_{n=0}^{\infty} b_{n}(z-a)^{n}$ in $|z-a|<R$. Then, by the proof of Taylor's Theorem, $b_{n}=\frac{f^{(n)}(a)}{n!}$. This implies that the given series $\left(^{*}\right)$ is the Taylor series of f.

Proposition 2 (Cauchy's Estimate): Let f be analytic and $|f(z)| \leq M(R)$ on $|z-a|<R$. Then,

$$
\left|f^{(n)}(a)\right| \leq \frac{n!M(R)}{R^{n}}
$$

Proof: By Cauchy Integral Formula for $\mathrm{n}^{\text {th }}$-derivative (Take $D=\{|z-a|<R\}$, for any $r<R$,
$f^{(n)}(a)=\frac{n!}{2 \pi i} \oint \frac{f(w)}{C_{C_{r}}} \frac{(w-a)^{n+1}}{} d w, n=0,1,2, \ldots$

$\Rightarrow\left|f^{(n)}(a)\right| \leq \frac{n!}{2 \pi} \frac{M(R)}{r^{n+1}} .2 \pi r=\frac{n!M(R)}{r^{n}}$ (using ML-Estimate)
Since $r<R$ is arbitrary, the result follows on letting $r \rightarrow R$.

Proposition 3 (Liouville's Theorem): An entire (i.e. analytic in the whole Complex Plane) function that is bounded in the whole Complex Plane is constant.

Proof: Since f is entire and bounded in the whole complex plane, $|f(z)| \leq M$ on every circle $C_{R} \equiv\{z:|z|=R\}$.

Now, expand $f(z)$ in to Taylor series as $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for z in $|z|<R_{0}$. The same expansion is valid for $|z| \leq R$ for all $R>R_{0}$.

By Cauchy Estimate,
$\Rightarrow\left|a_{n}\right|=\left|\frac{f^{n}(0)}{n!}\right| \leq \frac{M}{R^{n}} \rightarrow 0$ as $R \rightarrow \infty, \quad$ for all $n=1,2 \ldots$
$\Rightarrow f(z) \equiv a_{0}=$ constant, on every disk $|z| \leq R$

Consequently $f(z)$ is constant in the whole complex plane \boldsymbol{C}, since $R>R_{0}$ is arbitrary.

Proposition 4 (Fundamental Theorem of Algebra):

A polynomial of degree n has exactly n complex zeros (counted according to multiplicity).

Proof: Let $P_{n}(z)$ be a polynomial of degree $n \geq 1$. and it has no zeros in the complex plane \boldsymbol{C}. Then, the function $\varphi(z)=\frac{1}{P_{n}(z)}$
(i) is an entire function (ii) is bounded in \boldsymbol{C} (since $P_{n}(z) \rightarrow \infty$ as $z \rightarrow \infty$).

Therefore, by Liouville's Theorem, $\varphi(z)$ is constant. $\Rightarrow P_{n}(z)$ is also a constant function, a contradiction.

Thus, $P_{n}(z)$ has at least one zero, say a_{1} of multiplicity m_{1}.
Now, the polynomial $\frac{P_{n}(z)}{\left(z-a_{1}\right)^{m_{1}}}$, is of degree $n-m_{1}$. A repetition of the above arguments gives that it has at least one zero, say a_{2} of multiplicity m_{2}.

Continuing the process, it follows that $P_{n}(z)$ has $m_{1}+m_{2}+\ldots+m_{k}=n$ zeros at $a_{1}, a_{2}, \ldots, a_{k}$.

Proposition 5. If f is an entire function and $|f(z)| \leq M R^{n_{0}}$ in $|z| \leq R$ for every $R, 0 \leq R<\infty$ then f is a polynomial of degree at most n_{0}.

Proof: By Taylor's Theorem, expand $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in $|z|<R_{0}$. The same expansion is valid for all $R>R_{0}$.

By Cauchy Estimate,
$\left|f^{(n)}(0)\right| \leq \frac{n!M(R)}{R^{n}}$, where $M(R)=\max _{|z|=R}|f(z)|$
$\therefore\left|a_{n}\right| \leq \frac{M R^{n_{0}}}{R^{n}}=M R^{n_{0}-n} \rightarrow 0$ as $n \rightarrow \infty$, if $n>n_{0}$.
$\Rightarrow f$ is a polynomial of degree at most n_{0}.

