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Lecture	8	
	
We	 show	 that	 every	 analytic	 function	 can	 be	 expanded	 into	 a	
power	series,	called	the	Taylor	series	of	the	function.		
	
Taylor’s	Theorem:	Let	f	be	analytic	in	a	domain	D	&	aD.	Then,	
f(z)	can	be	expressed	as	the	power	series		
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where,	 rC D 	is	a	counterclockwise	oriented	circle,	of	radius	 r  

and center at a ,	such	that	it	encloses	only	points	of	D .	
	
The	representation	(1)	is	unique	and		is	valid	in	the	largest	open	
disk	with	center	a,	contained	in	D.	
	
Proof:	By	using	Cauchy	Integral	Formula	and	Cauchy	Theorem	
For	Multiply	Connected	Domains,		
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where,	 z 		is	any	point	enclosed	by	the			
circle	 rC 	and	C 	is	a	counterclockwise	

oriented	circle	| |w z   	with		
sufficiently	small	radius	 	such	that	C 			

lies	in	the	bounded	domain	enclosed	by	 rC .	
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Now,	
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Recall	that,	
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where,	
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Further,	since	 ( )f z 	is	represented	
	by	power	series,	by	a	previous	
	proposition	on	power	series,		
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differentiable	in	 z a r  	and		
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Thus,	(1)	represents	f	uniquely.	

w

DrC

C

 a  

 z
r



 13

	
Proposition:	 Every	 function ( )f z ,	 analytic	 in	 a	 domain	 D,	 is	
infinitely	many	times	differentiable	inD .	
	
Proof:	 { }a

a D
D z a r


    .		

	
 By	Taylor’s	Theorem,	for	every	a D ,	 ( )f z 	is	represented	
by	a	power	series	in	 az a r  .		

 By	 an	 earlier	 proposition	 on	 power	 series,	 the	 functions	
represented	 by	 a	 power	 series	 are	 infinitely	 many	 times	
differentiable.	
	

So	that	 ( )f z 	is	infinitely	many	times	differentiable	in	 az a r  	
for	every	a D .		
	
Therefore,	 ( )f z 	 is	 infinitely	 many	 times	 differentiable	 in	 D .
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Cauchy	Integral	Formula	for	nth‐derivative										

If	 f	 is	 analytic	 in	 a	 domain	 D	 and	
________

( , )B a r D ,	 where	
________

( , ) { : }B a r w w a r   .	Then,	
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where,	 : ( ) , 0 2it

rC w t a re t     ,	 is	 a	 counterclockwise	
oriented	circle	of	radius	r  centred at a .	
	
	
Proof:	 Follows	 immediately	 since,	 by	 the	 proof	 of	 Taylor’s	

Theorem,	
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For	 0n  	 ,	 denoting	 (0) ( ) ( )f a f a 	 ,	 (*)	 becomes	 Cauchy	
Integral	Formula.	
	
Note:	 In	 view	 of	 Cauchy	 Theorem	 for	 multiply	 connected	
domains,	 formula	 (*)	 remains	 valid	 with	 rC 	 replaced	 by	 any	
simple	 closed	 piece‐wise	 smooth	 curve	  	 so	 that	 (i)	 every	
point		enclosed	by	 	is	in	D 	(ii)	 	encloses	the		point	a .	This	is	
because	the	function	 1( ) / ( )nf w w a  	is	analytic	in	the	domain	
lying	between	 rC 	and	 .	
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Remark:	The	formula	(*)	gives	the	value	of	the	function	and	its	
derivatives	 at	 any	 point	 enclosed	 by	 a	 simple	 closed	 piecewise	
differentiable	 curve	  ,	 if	 the	 values	 of	 the	 function	 on	  	 are	
known.		
	
This	 helps	 in	 knowing	 the	 values	 of	 the	 function	 and	 its	
derivatives	 at	 sometimes	 inaccessible	 points	 through	 values	 at	
accessible	points.		
	
A	Computational	Method,	 called	Complex	Variable	Boundary	
Element	Method,	 	 	 developed	 	 using	 	 (*),	 	 is	 a	 great	 tool	 to		
computationally	generate	the	values	of	 ( ), ( ), ( ),... .f a f a f a etc  .				
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Deductions	From	Tayolor’s	Theorem:	
	
		
Proposition	 1:	 Every	 power	 series	 with	 nonzero	 radius	 of	
convergence	is	the	Taylor	series	of	the	function	represented	by	it.	
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 .	 This	 implies	 that	 the	

given	series	(*)	is	the	Taylor	series	of	f.	
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Proposition	 2	 (Cauchy’s	 Estimate):	 	 Let	 f	 be	 analytic	 and	
( ) ( )f z M R on z a R   .	Then,	
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Proof:	By	Cauchy	Integral	Formula		
for	nth‐derivative	(Take	 {| | }D z a R   	,		
for	any	r R ,		
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Since	r	<	R		is	arbitrary,	the	result	follows	on	letting	r R .	
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Proposition	3	(Liouville’s	Theorem):	An	entire	(i.e.	analytic	in	
the	whole	Complex	Plane)	function	that	is	bounded	in	the	whole	
Complex	Plane	is	constant.	
	
Proof:	 Since	 f 	 is	 entire	 and	 bounded	 in	 the	 whole	 complex	
plane,	 ( )f z M on	every	circle	 { :| | }.RC z z R  		
	

Now,	expand	 ( )f z 	in	to	Taylor	series	as	
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0z R .	The	same	expansion	is	valid	for	 0z R for all R R  .		
	
By	Cauchy	Estimate,		
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0( ) ,f z a constant on   	every	disk		 z R 	

	
Consequently	 ( )f z 	 is	 constant	 in	 the	whole	 complex	plane	C,	
since	 0R R 		is	arbitrary.	
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Proposition	4	(Fundamental	Theorem	of	Algebra):	
	
A	polynomial	of	degree	n	has	exactly	n	complex	zeros	 (counted	
according	to	multiplicity).	
	
	
Proof:	Let	Pn(z)	be	a	polynomial	of	degree	 1n  .	and	it	has	no	

zeros	 in	 the	 complex	plane	C.	Then,	 the	 function	
1

( )
( )n

z
P z

  	

(i)	is	an	entire	function	(ii)	is	bounded	in	C	(since	Pn(z)	 	as	
z  	).	
	
Therefore,	by	Liouville’s	Theorem,	 ( )z is	constant.		
 	Pn(z)	is	also	a	constant	function,	a	contradiction.		
	
Thus,	Pn(z)	has	at	least	one	zero,	say	 1a 	of	multiplicity	 1m .	
	

Now,	the	polynomial	
1

1

( )

( )
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m

P z

z a
,	is	of	degree	 1n m .	A	repetition	

of	the	above	arguments	gives	that	 it	has	at	 least	one	zero,	say	
2a 	of	multiplicity	 2m .		
	
Continuing	 the	 process,	 it	 follows	 that	 ( )nP z 	 has	

1 2 ... km m m n    	zeros	at	 1 2, ,..., ka a a .	
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Proposition	 5.	 If	 f	 is	 an	 entire	 function	 and	 0( ) nf z MR in	
z R for	every	 , 0R R   	 then	 f	 is	a	polynomial	of	degree	at	
most	 0n .	
	

Proof:	By	 Taylor’s	 Theorem,	 expand	
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The	same	expansion	is	valid	for	all	 0R R .		
	
By	Cauchy	Estimate,		
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f is	a	polynomial	of	degree	at	most	 0n .	

	
	


