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Lecture 8

We show that every analytic function can be expanded into a
power series, called the Taylor series of the function.

Taylor’s Theorem: Let f be analytic in a domain D & a €D. Then,
f(z) can be expressed as the power series

f(2)= 3 by(z-a)" (1)
1 f (w) @) L),
where, b, = 5 g‘fr (W—a)n+1 dW——n! , T¥ (@) = f(a),

where, C, < D is a counterclockwise oriented circle, of radius r
and center at a, such that it encloses only points of D.

The representation (1) is unique and is valid in the largest open
disk with center a, contained in D.

Proof: By using Cauchy Integral Formula and Cauchy Theorem
For Multiply Connected Domains,

f(2) = 1_95 f(w) dw — 1_95 f(w) dw,
Zmew—z 27l c, W—1Z

where, Z is any point enclosed by the
circle C, and C, is a counterclockwise

oriented circle |w—z |= p with
sufficiently small radius p such that C,

lies in the bounded domain enclosed by C,.
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Now,
1 1 1 Z—a

- - - 1- -1
w-z (w-a)—(z-a) W—a[ W—a]
Recall that,

_qn+1
1+g+..+q" =
1-q

1
= =1+Q+...+q" + ,
:>1—q q q 1-q

for any complex number g

Let = ﬁ. Then,

w-—a
(Z_a)n+1
1 _ 1 [1+Z_a+...+(z_a”+ 1 *w=a ]
W—zZ Ww-a w—a w—a w-—a 1_2—61
w-—a
—_ 1_ [ f(W)dW: 1_] f(W)dW-i-(Z—a) 1_] f(W)ZdW-l-...
27i ¢, W—1Z 27ic, W-a 2ric, (w—a)
1 f(w)
..+(z-2a)" dw
( ) 2771 (;Ir(w_a)n+1
+(Z_a)n+l lJ- fn(+\g-v) dw
2ric, (w—a) ~(w-2)
-
R, (2)

where,
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n+1

Z—a ) .
\Rn(z)\<‘ ‘ M (r).27zr, for M (r)=max| f(W)|
n+1
—rM*(r) =% S 0asn— oo, since|’ 1.
r r

Thus, f(z)= 3 b (z—a)",
n=0

1, W)
2 i c, (W_a)n+l :

with b, =

Further, since f(z) is represented

by power series, by a previous
proposition on power series,
f (z) is infinitely many times
differentiable in |z—a|<r and
1 f(w (" (a
Ly ) g, 17@
¢, (W— a) n!
§(n) (a)

n!
uniquely determined.

Since b, = , it depends only on f and 'a‘, so b,’s are

f (n)(a)

(because, if  (z) = niob; (z—a)", b = =b)).

Thus, (1) represents f uniquely.
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Proposition: Every function f(z), analytic in a domain D, is
infinitely many times differentiable inD.

Proof: D= U{z-a|<r,}.
aeD

e By Taylor’s Theorem, for every ae D, f(z) is represented
by a power series in [z—a|<,.
e By an earlier proposition on power series, the functions

represented by a power series are infinitely many times
differentiable.

So that f(z) is infinitely many times differentiable in \Z — a\ <r,
for every aeD.

Therefore, f(z) is infinitely many times differentiable in D.
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Cauchy Integral Formula for nt'-derivative

If f is analytic in a domain D and B(a,r) < D, where

B(a,r) ={w:|w—a|<r}. Then,

OYRULL f(w) _ %
f (a)_Zﬂii(w—a)”” dw, n=0,12,... (*)

where, C :w(t)=a+ reit, 0<t<2x, is a counterclockwise
oriented circle of radius r centred at a.

Proof: Follows immediately since, by the proof of Taylor’s
1 f(w f("(a

5 - ¢ ( )n+1dW=—|( ).

7l c, (W_a) n!

Theorem, b, =

For n=0 , denoting f®(a)=f(a) , (*) becomes Cauchy
Integral Formula.

Note: In view of Cauchy Theorem for multiply connected
domains, formula (*) remains valid with C, replaced by any

simple closed piece-wise smooth curve I' so that (i) every
point enclosed by I' isin D (ii) I' encloses the point a. This is

because the function f(w)/(w—a)™" is analytic in the domain
lying between C, and T".
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Remark: The formula (*) gives the value of the function and its
derivatives at any point enclosed by a simple closed piecewise

differentiable curve T', if the values of the function on T" are
known.

This helps in knowing the values of the function and its
derivatives at sometimes inaccessible points through values at
accessible points.

A Computational Method, called Complex Variable Boundary
Element Method, developed using (*), is a great tool to
computationally generate the values of f(a), f'(a), f"(a),... etc..
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Deductions From Tayolor’s Theorem:

Proposition 1: Every power series with nonzero radius of
convergence is the Taylor series of the function represented by it.

Proof: Let (*) %bn(z—a)n represents the function f{z) in
n=0

z-a<R, ie. f(z)= 3 b,(z-a)"in|z—a/<R. Then, by the
n=0

f("(a)

n!
given series (*) is the Taylor series of f.

proof of Taylor’s Theorem, b, = . This implies that the
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Proposition 2 (Cauchy’s Estimate): Let f be analytic and
f(z)[<M(R)on|z—a/<R.Then,

‘f(n)( )‘ n! M(R)

Proof: By Cauchy Integral Formula

for nth-derivative (Take D ={|z—a < R}, R
forany r <R,

nl
F gy Ny TW) dw, n=0,1,2,.,

2rric, (w—a)"™
|
:>‘f(”) (a)‘ i MH(E). 27 = n.Mn(R) (using ML-Estimate)
21 1 r

Since r < R is arbitrary, the result follows on letting r - R.
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Proposition 3 (Liouville’s Theorem): An entire (i.e. analytic in
the whole Complex Plane) function that is bounded in the whole
Complex Plane is constant.

Proof: Since f is entire and bounded in the whole complex
plane, | f (z)| < M on every circle Cy ={z:|z|=R}.

Now, expand f(z) in to Taylor series as f(z) = § a,z" for z in
n=0
z| < Ry. The same expansion is valid for [z <R for all R > R,.

By Cauchy Estimate,

n
= la,| =] fn(lo)lg :;/In —0asR—o, foralln=12..

= f(z) =a, =constant, on every disk |z/<R

Consequently f(z) is constant in the whole complex plane C,
since R > R, is arbitrary.
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Proposition 4 (Fundamental Theorem of Algebra):

A polynomial of degree n has exactly n complex zeros (counted
according to multiplicity).

Proof: Let Py(z) be a polynomial of degree n>1. and it has no
1

P (2)
(i) is an entire function (ii) is bounded in C (since Pn(z) — « as
Z—> 0 ),

zeros in the complex plane C. Then, the function ¢(z) =

Therefore, by Liouville’s Theorem, ¢(z)is constant.
—> Pn(z) is also a constant function, a contradiction.

Thus, Pn(z) has at least one zero, say a, of multiplicity m,.

P, (2)
(z—23)
of the above arguments gives that it has at least one zero, say
a, of multiplicity m,.

Now, the polynomial is of degree n—m,. A repetition

ml’

Continuing the process, it follows that P, (z) has
m, +m, +...+ M, =n zeros at a;,a,,...,a,.
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Proposition 5. If f is an entire function and |f(z)|< MR™in
Z|<Rfor every R,0< R <o then fis a polynomial of degree at
most n.

Proof: By Taylor’s Theorem, expand f(z)= 5 a,z"in [z|<R,.
n=0

The same expansion is valid for all R > R,,.

By Cauchy Estimate,
10 ()< M where M (R) = max f (2)
R
MR"0 - .
can] < o MR™™ —»0asn— o, if n>n,.

= f is a polynomial of degree at most n,.



