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	Lecture	9	
	
Line	Integrals	Independent	of	Path	
	
Definition	(Simply	Connected	Domain):	A	domain	G 	 is	called	
simply	connected	if	every	simple	closed	curve	in	G 	encloses	only	
points	of	G (i.e.	the	domain	G 	has	no	holes).	
	
Let	G	be	a	simply	connected	domain	and	the	points	 ,a z G .	Let	
the	 function	 f	 be	 continuous	 on	 G.	 	 The	 indefinite	 integral	

( )
z

a
f w dw 	 is	 called	 independent	 of	 path	 if	 the	 value	 of	 the	

integral	is	the	same	for	all	simple	piecewise	differentiable	curves	
C	lying	in	G	and	joining	the	points	a	and	z.	
	
It	 is	 easily	 seen	 that	 an	 indefinite	 integral	 is	 independent	 of	
path,	if	
	
(i) f 	is	analytic	in	G	
or	
(ii) ( )

C
f w dw 	=	0	for	every	closed	piece‐wise	differentiable	

curve	C 	lying	in	G .			
	
	
Note	 that	 (i)(ii)	 so	 it	 is	 sufficient	 to	 prove	 that	 indefinite	
integrals	 are	 independent	 of	 path	 by	 using	 (ii).	 This	 can	 be		
done	as	follows	by	using	the	definition	of	integration:	
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Let	 1 2,C C 	 	be	any	two	piecewise	differentiable	curves	 joining	 a 	
and	 z 	.		
	
Consider	the	curve	 1 2( )C C U C  	.	Since	C 	is	a	closed	curve	
	
	 ( ) 0
C

f w dw  	
1 2 2

( ) ( ) ( )
C C C

f w dw f w dw f w dw


      	

thus	the	integral	 ( )
z

a
f w dw is	independent	of	path).	

	

Note:	 An	 indefinite	 integral ( )
z

a
f w dw 	 defines	 a	 function	F(z)	

by	F(z)	= ( )
z

a
f w dw 	only	if	 ( )

z

a
f w dw 	is	independent	of	path.	
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Proposition.	 Let	 ( )
z

a
f w dw 	 be	 independent	 of	 path,	 f 	 is	

continuous	 in	 a	 simply	 connected	 domain	 G 	 containing	 	 the	

points	 a 	 and	 z 	 and	 ( ) ( )
z

a
F z f w dw .	 Then,	 ( )F z 	 is	

differentiable	and	 ( ) ( )F z f z  	for	all	 z G 	.	
	
Proof.	We	have	

	 	 ( ) ( ) ( )
z z

z
F z z F z f w dw


    	

Choose	 the	 path	 of	 integration	 from	 z	 	 to	 z 	 to	 be	 a	 straight	
line	segment	(this	is	possible,	since,	by	assumption,		the	value	of	
integral	is	same	along	every	path	joining	 z 		and	 z )			
	

( ) ( ) 1 1
( ) ( ) ( )

z z z z

z z

F z z F z
f z f w dw f z dw

z z z

 
 

  
   

  
	

	 	 	 																							  1
( ) ( )

z z

z
f w f z dw

z


 


.														(*)	

	
Now,	f		is	continuous	at	z	

0, 0, . . ( ) ( )for s t f w f z whenever w z           .		
	
Therefore,	(*)	gives,	
	

	
( ) ( ) 1

( ) . . ,
F z z F z

f z z whenever z
z z

    
     

 
.	

( ) ( )F z f z  .	
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Proposition	 (Morera’s	 Theorem,	 Converse	 of	 Cauchy	
Theorem):	
	If	 f	 is	 continuous	 in	 a	 simply	 connected	 domain	 G	 and	

( )
C

f w dw =	0,	for	every	closed	curve	C	in	G,	then	f	is	analytic	in	G.	

	
Proof.	 	 By	 the	 hypothesis	 of	 Morera’s	 Theorem,	

( ) ( )
z

a
F z f w dw 	,	 ,a z G 	,	is	independent	of	path.		

The	previous	proposition	 ( ) ( )F z f z  exists	 	for	 every	
z G 	.	 	
	

F is	 analytic,	 so	 has	 derivatives	 of	 all	 orders	 in	 G 	 (by	 a	
Proposition	 	 based	 on	 Taylor’s	 Theorem);	 in	 particular,	 the	
second	derivative		of	F 	in	G 	exists.	

	
 	the	derivative	of	 f 	exists	in	G 	.	
	
 	 f 	is	analytic	in	G 	
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Zeros	of	Analytic	Functions	
	
The	 point	 ‘a 	 ’	 is	 called	 a	 zero	 of	 order	 m 	 of	 a	 function	 f(z),	
analytic	at	the	point	a ,		if	
	
	 ( 1)( ) ( ) ... ( ) 0 ( ) 0m mf a f a f a but f a     .	
	
If	the	function	f(z)	has	a	zero	of	order	m	at	the	point	a ,	then		
	
	

( ) ( ) ( ) ( ), ( ) ( )n m n m
n n

n m n m
f z b z a z a g z where g z b z a

  

 
      

.	

Since,	
( ) ( )

( )
!

m

m
f a

g a b
m

  ,	it	follows	that	 ( ) 0g a  .	
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Isolated	 Zeros	Theorem.	 The	 zeros	 of	 functions	 analytic	 in	 a	
domain	D 	are	isolated	unless	the	function	is	identically	zero.	
	
(A	zero	‘a’	of	function	 f 	is	called	isolated	if	a	disk	centered	at	‘a’	
can	be	found	which	does	not	contain	any	other	zero	of	 f 	)		
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Proof:	Let	 ( )f z 	 	be	analytic	in	a	domain	D 	and	a D 	be	such	
that	 ( ) 0f a  .	 Consider	 the	 	 Taylor	 series	 expansion	

0
( )n

n
n

b z a



  		of		 ( )f z 	convergent	in	a	disk		{ : }z z a R D   .		

	
Let	 0jb  	for	1 1j k   	and	 0kb  	.	Then,		

	 	
0

( ) ( ) ( )k n
n k

n
f z z a b z a





   ( ) ( ) ( )kz a g z say  	

Since,	 	
0

( )n
n k

n
b z a





  has	 same	 radius	 of	 convergence	 as	

0
( )n

n
n

b z a



  ,	 the	 function	 ( )g z 	 represented	 by	 it	 is	 analytic,	

hence	is	continuous,		in	 z a R  .		
	
The	continuity	of	g(z)	at	 a 	 	and	 ( ) 0kg a b   	 there	exists	a	

0  		such	that	
| |

| ( ) |
2
k

k
b

g z b  		for	all	 z 	in	 z a   .		

	
 		 ( ) 0g z  	for	all	 z 	in	 z a   .		
	
Let	 * min( , )R  	 .	 Then	 ( ) 0g z  	 in	 the	 disk	 *z a   	
contained	in	D 	.		
	
Consequently,	 ( ) 0f z  	 in	 the	disk	 *z a   ,	 except	at	 0a  	 .	
Thus,	the	zero	a 		of	 ( )f z 	is	isolated.	
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Corollary	 1:	 If	 f	 and	 g	 are	 analytic	 in	 a	 domain	 D	 and	
{ }na sequence z with	 a	 limit	 point	 in	 D,	 such	 that	

( ) ( )n nf z g z for	all	n,	then	 ( ) ( ) .f z g z in D 	
	
Proof:		Apply	the	above	theorem	for		the	function	

( ) ( ) ( )z f z g z   .	
	
Corollary	 2:	 If	 f	 and	 g	 are	 analytic	 in	 a	 domain	 D	 and	

( ) ( )f g  	 for	 all	 the	 points	 lying	 on	 some	 curve	 in	 D,	 then	
( ) ( ) .f z g z in D 	

	
	


