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Introduction To Complex Analysis 

 
The problems marked (T)  need an explicit discussion in the tutorial class. Other problems are for 
enhanced practice.  

 
 

1. Sketch the following sets and determine which ones of these are domains: 
(a) 12  iz            (b) 1111:{  zorzzS        (T)(c) 4/arg0  z  

(T)(d) zz  4  (e) 0Re  az (f) zz ReIm    (T)(g) 0 aforaziaz . 

 
(a) open and connected, being an open disc, so a domain (b) open and disconnected, being union of two disjoint 
open discs, so not a domain (c) closed and connected, being the closed region between two rays, so not a 
domain (d) closed half plane, given by 2x ,  so not a domain (e) open and disconnected, being the union of 
two half planes x > a and x < - a, so not a domain (f) closed region below the line y = x, so not a domain (g) 
open and connected region defined by y < -x, since a > 0, so a domain. 
   
2. Which of the following functions f(z) can be defined at z = 0 so that they become continuous at z = 0: 
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so it cannot be made continuous at z = 0 howsoever its defined at z = 0 (c) As 0z , 0
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x = 0 and f(z) 3  along y = 0 and x > 0, so it cannot be made continuous at z = 0 howsoever its defined at z = 
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made continuous at z = 0 howsoever its defined at z = 0 (e) As 0z , f(z) = 
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along any line y = mx and f(z) 2/1  along y = x2, so it cannot be made continuous at z = 0 howsoever its 
defined at z = 0. 
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However, as z 0  along the line y = - x, f(z) 0  as 0z   so that the limit of f(z) as z 0  does not exist. 
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4. Show that (a) f(z) = Re z is not differentiable for any z  (b) 
2

)( zzf   is differentiable only at z = 0. 
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the given function is not differentiable for any z. (b) As 0z , the quotient 
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5. (T)Show that the function 
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is continuous at z = 0, fiirst order partial derivatives of its real and imaginary part exist at z = 0, but f(z) 
is not differentiable at z = 0. 

 
  
Continuity: 00)(00)(  zaszfzaszzf , implying continuity at z = 0. 

First Order Partial Derivatives: Let  ( ) ( , ) ( , )f z u x y i v x y  , then  ( ,0)u x x  = x, ( ,0) 0v x  , (0, ) 0u y  , 

(0, )v y y . Since, 
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shown (0,0)yu , (0,0)xv  and (0,0)yv  exist. 

Differentiability: As z 0 , the quotient 
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quotient 1 along the line z = x + i x, x real, showing that f(z) is not differentiable at z = 0. 
 
 
6. Prove that if a function f(z) is differentiable at z = 0, it is continuous at z = 0. 
 
Follows by standard arguments. 
 
 
7. Show that for each of the following functions Cauchy-Riemann equations are satisfied at the origin. Also 

determine whether these functions are differentiable at z = 0. Are these functions analytic at z = 0? 

(T) (i) )Im()Re()( zzzf    (ii) 22)( yxixyzf  , z x i y     (iii) 
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x . Similarly, uy(0, 0) = 0. 

Further, since v  0, vx(0, 0) = vy(0, 0) = 0.   CR equations are satisfied at z = 0. 
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As z0, the quotient 
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the line x = y. Consequently, f(z) is not differentiable at z = 0. 
 
(ii) Observe that ux, uy, vx, vy exist in a neighbourhood of z = 0, are continuous and satisfy CR equations at        

z = 0, consequently f(z) is differentiable at z = 0.Since CR equations are satisfied only at z = 0, f(z) is not 
analytic at z = 0. 
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 is not continuous at z = 0. Consequently, the derivative of f(z) does not 

exist at z = 0. 
 
 
8. Find the domain in which the function  

22 ImRe)( zizzf   

   is analytic. 
 
 

 Observe that xyiyxzf 2)( 22  can be written as 

,4/54/0)( 2   andforzzf  

2/34/52/4/)( 2   andforzzf , 

4/72/34/32/)( 2   andforzzf , 

 24/74/3)( 2  andforzzf . 
Consequently, the function is analytic in the regions 

.4/72/3,4/32/,4/5,4/0    
Further, along the rays ,4/7,2/3,4/5,,4/3,2/,4/,0   either the real part or the imaginary part 
of f(z) is zero, so it is not analytic on these rays. 
 
9. (T)Show that the derivative of a real valued function f(z) of a complex variable z, at any point, is either zero 

or it does not exist. 
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either does not exist, or if it exists, it must be zero. 
 
10. (T)Prove that 

(a) If 
_____

)()( zfandzf  both are analytic in a domain D, then f(z) is a constant function in D. 
(b) If  f(z) is analytic and )(zf     0  in a domaind D, then f(z) is a constant function in D. 
(c) If f(z) is analytic in a domain D and ux + vy = 0 in D, then )(zf   is constant in D. 
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(a) f(z) = u + i v, 
_____

)(zf = u – i v analytic in a domain D implies ux = vy and ux = - vy   ux = 0 =  vy 
  and  
uy = - vx and uy = - (- vx )  uy = 0 =  vx 
   u and v are constants in D. 
(b) 0)(  xx viuzf  in a domain D   ux = 0 =  vy and vx = 0 =  -uy in D 

  u and v are constants in D. 
 
(c)  ux + vy = 0   ux =  - vy  
But, by CR equations, ux = vy  
  ux = 0 =  vy   u is a function of y alone and v is a function of x alone. 
Again, by CR equations, uy = - vx. 
   A function of y alone (i.e. uy) =  A function of x alone (i.e. vx) 
  uy = vx = constant (say, K) in D. 
 .)( DiniKviuzf xx   

      
11. (T)Let f(z) = u + i v = ieR be an analytic function in a domain D. Prove that if any of the functions u, v, R, 

  is identically constant in D, then f(z) is a constant function in D. 
(i)   constantu   (by CR equations)  vx=  vy = 0  constantv   
(ii)  constantv   (by CR equations)  vx=  vy = 0  constantv   
(iii) constantR   222 vuR  is constant 00  yyxx vvuuandvvuu  

   00)(  xyyx uvuuanduvuuequationsCRBy 0,0  yx uu  

   constantu   (by (i)) f(z) is constant. 

(iv) constantfArg   )(tan 1 saycconstantreala
u

v
 v = u tan c. 

    f(z) = (1 + i tan c) u is analytic 
    g(z) = (1 - i tan c) f(z) is analytic  
  g(z) = (1 +  tan2 c) u is analytic 
   (since Im(g) = 0) constantg  .   constantf  . 
 
12. If f(z) is an analytic function in a domain D, prove that 

222 )(4)( zfzf  . 

 f(z) = u + i v is analytic in D equationsCRsatisfyvu & . Let 222
)( vuzf  . Then,  
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222222 )(422)( zfvvuuzf    = 
2

)(4 zf  . 

 
13. Using CR equations in cartesian coordinates, obtain the following CR equations in the polar coordinates: 

 uvrvur rr  , . Express )(zf   in terms of the partial derivatives with respect to andr . 

 
(a) Put x = r cos  and y = r cos  and express the first partial derivatives with respect to x and y in terms of the 

first partial derivatives with respect to r and  . The CR equations in Cartesian Coordinates then transform 
in to the given CR equations in the Polar Coordinates. 
 

(b) Use xx viuzf  )(  and the transformation of the first partial derivatives with respect to cartesian 

coordinates to the first partial derivatives with respect to polar coordinates found in (a) above. 


