Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 MSO202A/MSO202 Assignment 4 Solutions
 Introduction To Complex Analysis

The problems marked (T) need an explicit discussion in the tutorial class. Other problems are for enhanced practice.

1. (T) Give examples for the following:
(a)The radius of convergence of Taylor series of a function with center as some point a in the domain of analyticity D of the function is larger than the largest disk $|z-a|<R$ contained in D
(b) Two Taylor series with different centers represent the same analytic function in the intersection of their disks of convergence.
(c) The disk of convergence of Taylor series of a function is strictly contained in the domain of analyticity of a function.

Solution:
(a)The Taylor series of
$\log z,-\pi<\operatorname{Arg} z<\pi$, centred at $a=-1+i$, is

$$
\begin{equation*}
\log z=\log (-1+i)+\sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!(-1+i)^{n}}(z+1-i)^{n} \tag{*}
\end{equation*}
$$

which has radius of convergence $\sqrt{2}$, while the largest disk centered at $-1+i$ and contained in the domain of anlyticity of $\log z$ is $|z+1-i|<1$.

(b) The power series $\frac{1}{1-i} \sum_{n=0}^{\infty}\left(\frac{z-i}{1-i}\right)^{n}$ around the point i has the radius of convergence $\sqrt{2}$ and the power series $\sum_{n=0}^{\infty} z^{n}$ has radius of convergence 1 . On $D=\{|z-i|<\sqrt{2}\} \cap\{|z|<1\} \neq \phi$ both the series are Taylor series of the same function $\frac{1}{1-z}$.

(c) The function $\frac{1}{1-z}$ is analytic in the set $\boldsymbol{C}-\{1\}$ but its Taylor series $\sum_{n=0}^{\infty} z^{n}$ around $z=0$ has its disk of convergence $|z|<1$, strictly contained in $\boldsymbol{C}-\{1\}$.
2. Evaluate the following integrals on the indicated curves, all of them being assumed to be oriented in the counterclockwise direction:
(T)(a) $\int_{C} \frac{1}{z^{4}-1} d z, C:|z|=2$ (b) $\int_{C} \frac{2 z^{3}+z^{2}+4}{z^{4}+4 z^{2}} d z, C:|z-2|=4$.

Solution:
(a) Given Integral $=\frac{1}{4} \int_{C}\left(\frac{1}{z-1}-\frac{1}{z+1}+\frac{i}{z-i}-\frac{i}{z+i}\right) d z=0$
(b) Given Integral $=\int_{C}\left(\frac{1}{z^{2}}+\frac{1}{z+2 i}+\frac{1}{z-2 i}\right) d z=4 \pi i$.
3. Evaluate the following integrals on the square C , oriented in the counterclockwise direction and having sides along the lines $x= \pm 2$ and $y= \pm 2$:
(T)(i) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$
(T)(ii) $\int_{C} \frac{\cosh z}{z^{4}} d z$.

Solution:
(i) Given Integral $=\int_{C} \frac{\cos z /\left(z^{2}+8\right)}{z} d z=2 \pi i\left(\frac{\cos z}{z^{2}+8}\right)_{z=0}=\frac{\pi i}{4}$,
since $z= \pm 2 \sqrt{2} i$ does not lie in the region bounded by C.
(ii) Cosh z is analytic inside and on C , therefore

Given Integral $=\frac{2 \pi i}{\underline{3}}\left(\frac{d^{3}}{d z^{3}} \cosh z\right)_{z=0}=0$
4. Using Liovuille Theorem, show that the functions $\exp (z), \sin z, \cos z, \sinh z, \cosh z$ are not bounded in the complex plane \boldsymbol{C}.

Solution: All the functions are entire. Had these functions been bounded in C, each would be a constant function (by Liouville Theorem), which they are not.
5. Show that every polynomial $\mathrm{P}(\mathrm{z})$ of degree n has exactly n zeros in the complex plane.

Solution: Let $P_{n}(z)$ be a polynomial of degree $n \geq 1$. and assume that it has no zeros in the complex plane \boldsymbol{C}. Then, the function $\varphi(z)=\frac{1}{P_{n}(z)}$ (i) is an entire function (ii) is bounded in $\boldsymbol{C}\left(\operatorname{since} P_{n}(z) \rightarrow \infty\right.$ as $\left.z \rightarrow \infty\right)$ Therefore, by Liouville's Theorem, $\varphi(z)$ is constant. $\Rightarrow P_{n}(z)$ is also a constant function, a contradiction. Thus, $P_{n}(z)$ has at least one zero, say a_{1} of multiplicity m_{1}. If $m_{1}=n$, the desired result follows.

If $m_{1} \neq n$, the polynomial $\frac{P_{n}(z)}{\left(z-a_{1}\right)^{m_{1}}}$, is a non-constant polynomial of degree $n-m_{1}$ and a repetition of the above arguments gives that it has at least one zero, say a_{2} of multiplicity m_{2}.

The above process continues till $m_{1}+m_{2}+\ldots+m_{k}=n$ for some natural number $k \geq 1$. It therefore follows that $P_{n}(z)$ has zeros at $a_{1}, a_{2}, \ldots, a_{k}$ of respective multiplicities $m_{1}, m_{2} \ldots, m_{k}$ such that $m_{1}+m_{2}+\ldots+m_{k}=n$.
6. If f is an entire function and $|f(z)| \leq M R^{n_{0}}$ in $|z| \leq R$, prove that f is a polynomial of degree at most n_{0}.

Solution: By Taylor's Theorem, expand $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in $|z|<R_{0}$. The same expansion is valid for all $R>R_{0}$. By Cauchy Estimate, $\left|f^{(n)}(0)\right| \leq \frac{n!M(R)}{R^{n}}$, where $M(R)=\max _{|z|=R}|f(z)|$
$\therefore\left|a_{n}\right| \leq \frac{M R^{n_{0}}}{R^{n}}=M R^{n_{0}-n} \rightarrow 0$ as $n \rightarrow \infty$, if $n>n_{0} . \Rightarrow f$ is a polynomial of degree at most n_{0}.
7. Let $f(z)$ be analytic in $|z| \leq R$. Prove that, for $0<\mathrm{r}<\mathrm{R}$,

$$
f\left(r e^{i \varphi}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\theta-\varphi)} f\left(\mathrm{Re}^{i \varphi}\right) d \varphi \text { (called Poisson Integral Formula). }
$$

Solution: Let $|a|<R$. By Cauchy Integral Formula, $f(a)=\frac{1}{2 \pi i} \int_{|z|=R} \frac{f(z)}{z-a} d z$ \qquad

Since the point $\frac{R^{2}}{\bar{a}}$ lies outside the circle $|z|=R$, by Cauchy Theorem, $0=\frac{1}{2 \pi i} \int_{|z|=R} \frac{f(z)}{z-\left(R^{2} / \bar{a}\right)} d z$
Adding (i) and (ii), $f(a)=\frac{1}{2 \pi i} \int_{|z|=R} \frac{f(z)\left(R^{2}-a \bar{a}\right)}{(z-a)\left(R^{2}-\bar{a} z\right)} d z$. Now, letting $a=r e^{i \theta}$ and $z=R e^{i \varphi}$ in the above equation, gives

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(R e^{i \varphi}\right)\left(R^{2}-r^{2}\right)}{R e^{i \varphi}\left(1-\frac{a}{R} e^{-i \varphi}\right)\left(R^{2}-\bar{a} R e^{i \varphi}\right)} i R e^{i \varphi} d \varphi=\frac{1}{2 \pi} \int_{|z|=R} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\theta-\varphi)} f\left(\operatorname{Re}^{i \varphi}\right) d \varphi
$$

8. (T) Evaluate $\int_{\Gamma} \frac{1}{z^{4}} d z$, where Γ is the part of clockwise oriented ellipse $\frac{(x-3)^{2}}{1}+\frac{y^{2}}{4}=1$ lying in the upper half-plane $\{z: \operatorname{Im} z>0\}$.

Solution: Let Γ^{*} be the clockwise oriented closed curve consisting of the part of given ellipse in upper halfplane and the line segment L with initial point $(4,0)$ and end point $(2,0)$. Since the function $1 / z^{4}$ is analytic inside and on $\Gamma^{*}, \int_{\Gamma} \frac{1}{z^{4}} d z=\int_{-L} \frac{1}{z^{4}} d z=\int_{2}^{4} \frac{1}{x^{4}} d x=-\frac{1}{3}\left(x^{-3}\right)_{2}^{4}=\frac{7}{192}$.
9. Find the order of the zero $\mathrm{z}=0$ for the following functions:
(i) $z^{2}\left(e^{z^{2}}-1\right)$
(T) (ii) $6 \sin z^{3}+z^{3}\left(z^{6}-6\right)$
(T)(iii) $e^{\sin z}-e^{\tan z}$

Solution:

(i) The first nonzero term in the Taylor series of the given function around $z=0$, contains z^{4}, therefore its zero at $\mathrm{z}=0$ is of order 4
(ii) The first nonzero term in the Taylor series of the given function around $z=0$, contains z^{15} therefore its zero at $\mathrm{z}=0$ is of order 15 .
(iii) The first nonzero term in the Taylor series of the given function around $\mathrm{z}=0$, contains z^{3} therefore its zero at $\mathrm{z}=0$ is of order 3 .
10. Find the order of all the zeros of the following functions:
(i) $z \sin z$
(T) $(i i)\left(1-e^{z}\right)\left(z^{2}-4\right)^{3}$
(T) (iii) $\frac{\sin ^{3} z}{z}$

Solution:
(i) zero of order 2 at $\mathrm{z}=0$, simple zeros at $\mathrm{z}=n \pi, \mathrm{n}=$ nonzero integer.
(ii) zero of order 3 at $\mathrm{z}= \pm 2$, simple zeros at $\mathrm{z}=2 n \pi i, \mathrm{n}=$ nonzero integer.
(iii) zero of order 2 at $\mathrm{z}=0$, zeros of order 3 at $\mathrm{z}=n \pi, \mathrm{n}=$ nonzero integer.
11. (T)Does there exist a function $\mathrm{f}(\mathrm{z})$ (not identically zero) that is analytic in $|z|<1$ and has zeros at the following indicated set of points ? Why or why not?
(i) $S_{1}=\left\{\frac{1}{n}: n\right.$ is a natural number $\}$ (ii) $S_{2}=\left\{1-\frac{1}{n}: n\right.$ is a natural number $\}$
(iii) $S_{3}=\{z:|z|<1, \operatorname{Re}(z)=0\}$
(iv) $S_{4}=\left\{z=\frac{1}{2}+i y:-\frac{1}{2}<y<\frac{1}{2}\right\}$.

Solution:
(i) No, since limit point of S_{1} is 0 which lies in $|z|<1$, so 0 would be a non-isolated zero of $f(z)$ (ii) Yes, since limit point of S_{2} does not lie in $|z|<1$ (iii) No, since limit points of S_{3} lie in $|z|<1$ (iv) No, since limit points of S_{4} lie in $|z|<1$.

