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Introduction	To	Complex	Analysis	

	
The	problems	marked	(T)	need	an	explicit	discussion	in	the	tutorial	class.	Other	problems	are		for	enhanced	
practice.		
 

 
1. (T)	Give	examples	for	the	following:	

	
(a)The	radius	of	convergence	of	Taylor	series	of	a	function	with	center	as	some	point	 a 	in	the	domain	
of	analyticity	D 	of	the	function	is	larger	than	the	largest	disk	 z a R  	contained	in	D 		

(b)	Two	Taylor	series	with	different	centers	represent	the	same	analytic	function	in	the	intersection	
of	their	disks		of	convergence.	
(c)	 The	 disk	 of	 convergence	 of	 Taylor	 series	 of	 a	 function	 is	 strictly	 contained	 in	 the	 domain	 of	
analyticity	of	a	function.	

	
Solution:	
(a)The	Taylor	series	of		
	

,Log z Arg z    ,	 1centred at a i   ,	is	
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which	has	radius	of	convergence	 2 	,	while	the	largest	disk	centered		
at	 1 i  	and	contained	in	the	domain	of	anlyticity	of	 Log z 	is	 1 1z i   .	

	

(b)	The	power	series		
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radius	of	convergence	1.	On	 { 2} { 1}D z i z       	both		

the	series	are	Taylor	series	of	the	same	function	
1

1 z
.	

	
	

(c)	The	function	
1

1 z
	is	analytic	in	the	set	C {1} 	but	its	Taylor	series	
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 	around	 0z  	has	its	disk	of	

convergence	 1z  ,	strictly	contained	in	C {1} .	
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2. Evaluate the following integrals on the indicated curves, all of them being assumed to be oriented in the 

counterclockwise direction: 
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Solution:  

(a) Given Integral = 
1 1 1

( ) 0
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(b) Given Integral = 2
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3. Evaluate the following integrals on the square C, oriented in the counterclockwise direction and having 

sides along the lines 2 2x and y    : 

(T)(i) 2
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( 8)C

z
dz
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z
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Solution: 
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(ii) Cosh z is analytic inside and on C, therefore 

Given Integral = 
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4. Using Liovuille Theorem, show that the functions exp(z), sin z, cos z , sinh z, cosh z are not bounded in the 

complex plane C. 
 
Solution: All the functions are entire. Had these functions been bounded in C, each would be a constant function 
(by Liouville Theorem), which they are not. 
 
5. Show that every polynomial P(z) of degree n has exactly n zeros in the complex plane. 
 
Solution: Let	Pn(z)	be	a	polynomial	of	degree	 1n  .	and	assume	that	it	has	no	zeros	in	the	complex	plane	

C.	Then,	the	function	
1

( )
( )n

z
P z

  	(i)	is	an	entire	function	(ii)	is	bounded	in	C	(since	Pn(z)	 	as	 z  )		

Therefore,	by	Liouville’s	Theorem,	 ( )z is	constant.	 	Pn(z)	is	also	a	constant	function,	a	contradiction.		
Thus,	Pn(z)	has	at	least	one	zero,	say	 1a 	of	multiplicity	 1m .	If	 1m n ,	the	desired	result	follows.	
	

If	 	 1m n ,	 the	polynomial	
1

1

( )
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n

m

P z

z a
,	 is	a	non‐constant	polynomial	of	degree	 1n m 	and	 	a	repetition	of	

the	above	arguments	gives	that	it	has	at	least	one	zero,	say	 2a 	of	multiplicity	 2m .		
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The	above	process	continues	till	 1 2 ... km m m n    	for	some	natural	number	 1k  .			It	therefore	follows	

that	 ( )nP z 	has		zeros	at	 1 2, ,..., ka a a 	of	respective	multiplicities	 1 2, ..., km m m 	such	that	 1 2 ... km m m n    .	
	
6. If	 f 	 is	 an	 entire	 function	 and	 0( ) nf z MR in	 z R ,	 prove	 that	 f 	 	 is	 a	 polynomial	 of	 degree													

at	most	 0n .	
	

Solution: By	 Taylor’s	 Theorem,	 expand	
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      .	 f is	a	polynomial	of	degree	at	most	 0n .	

 

7. Let ( )f z  be analytic in z R . Prove that, for 0 < r < R, 
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Solution: Let .a R  By Cauchy Integral Formula, 
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Since the point 
2R

a
 lies outside the circle z R , by Cauchy Theorem, 2
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Adding (i) and (ii), 
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8. (T) Evaluate 4

1
dz

z
  , where   is the part of clockwise oriented ellipse 

2 2( 3)
1

1 4

x y
   lying in the upper 

half-plane { : Im 0}z z   . 
 

Solution: Let *  be the clockwise oriented closed curve consisting of the part of given ellipse in upper half-

plane and the line segment L  with initial point (4,0)  and end point (2,0) . Since the function 41 / z   is analytic 

inside and on * ,  
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9. Find the order of the zero z = 0 for the following functions: 

22( ) ( 1)zi z e     (T) 3 3 6( ) 6sin ( 6)ii z z z      (T)(iii)  sin tanz ze e  
 

Solution: 
(i) The first nonzero term in the Taylor series of the given function around z = 0, contains z4, therefore its 
zero at z = 0 is of order 4  
(ii) The first nonzero term in the Taylor series of the given function around z = 0, contains z15 therefore its 
zero at z = 0 is of order 15. 
(iii) The first nonzero term in the Taylor series of the given function around z = 0, contains z3 therefore its 
zero at z = 0 is of order 3. 
 

10. Find the order of all the zeros of the following functions: 

( ) sini z z           (T) 2 3( )(1 )( 4)zii e z             (T)
3sin

( )
z

iii
z

 

Solution: 
(i)  zero of order 2 at z = 0, simple zeros at z = n , n = nonzero integer. 
(ii)  zero of order 3 at z =  2, simple zeros at z = 2n i , n = nonzero integer. 
(iii) zero of order 2 at z = 0, zeros of order 3 at z = n , n = nonzero integer. 
 
11. (T)Does there exist a function f(z) (not identically zero ) that is analytic in 1z  and has zeros at the 

following indicated set of points ? Why or why not? 

 (i)  1

1
{ : }S n is a natural number
n

 (ii)  2

1
{1 : }S n is a natural number

n
   

 (iii) 3 { : 1, Re( ) 0}S z z z               4

1 1 1
( ) { : }

2 2 2
iv S z iy y      . 

 
Solution:  
(i) No, since limit point of S1 is 0 which lies in 1z  , so 0 would be a non-isolated zero of f(z) (ii) Yes, since 

limit point of S2 does not lie in 1z   (iii) No, since limit points of S3 lie in 1z  (iv) No, since limit points of 

S4 lie in 1z  . 

 

            G.P.Kapoor


