Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 4 Solutions Introduction To Complex Analysis

The problems marked **(T)** need an explicit discussion in the tutorial class. Other problems are for enhanced practice.

1. **(T)** Give examples for the following:

(a)The radius of convergence of Taylor series of a function with center as some point *a* in the domain of analyticity *D* of the function is larger than the largest disk |z - a| < R contained in *D*

(b) Two Taylor series with different centers represent the same analytic function in the intersection of their disks of convergence.

(c) The disk of convergence of Taylor series of a function is strictly contained in the domain of analyticity of a function.

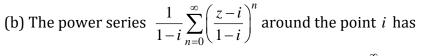
Solution:

(a) The Taylor series of

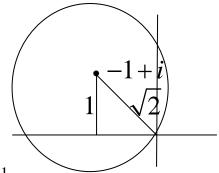
 $Log z, -\pi < Arg z < \pi$, centred at a = -1 + i, is

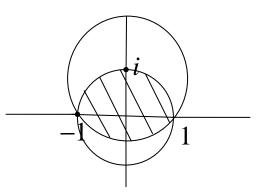
$$Log \ z = Log(-1+i) + \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!(-1+i)^n} (z+1-i)^n$$
 (*)

which has radius of convergence $\sqrt{2}$, while the largest disk centered at -1+i and contained in the domain of anlyticity of Log z is |z+1-i| < 1.



the radius of convergence $\sqrt{2}$ and the power series $\sum_{n=0}^{\infty} z^n$ has radius of convergence 1. On $D = \{|z-i| < \sqrt{2}\} \cap \{|z| < 1\} \neq \phi$ both the series are Taylor series of the same function $\frac{1}{1-z}$.





(c) The function $\frac{1}{1-z}$ is analytic in the set $C - \{1\}$ but its Taylor series $\sum_{n=0}^{\infty} z^n$ around z = 0 has its disk of convergence |z| < 1, strictly contained in $C - \{1\}$.

2. Evaluate the following integrals on the indicated curves, all of them being assumed to be oriented in the counterclockwise direction:

(**T**)(a)
$$\int_C \frac{1}{z^4 - 1} dz$$
, $C: |z| = 2$ (b) $\int_C \frac{2z^3 + z^2 + 4}{z^4 + 4z^2} dz$, $C: |z - 2| = 4$

Solution:

(a) Given Integral =
$$\frac{1}{4} \int_C (\frac{1}{z-1} - \frac{1}{z+1} + \frac{i}{z-i} - \frac{i}{z+i}) dz = 0$$

(b) Given Integral = $\int_C (\frac{1}{z^2} + \frac{1}{z+2i} + \frac{1}{z-2i}) dz = 4\pi i$.

3. Evaluate the following integrals on the square C, oriented in the counterclockwise direction and having sides along the lines $x = \pm 2$ and $y = \pm 2$:

(**T**)(i)
$$\int_C \frac{\cos z}{z(z^2+8)} dz$$
 (**T**)(ii) $\int_C \frac{\cosh z}{z^4} dz$

Solution:

(i) Given Integral = $\int_{C} \frac{\cos z / (z^2 + 8)}{z} dz = 2\pi i (\frac{\cos z}{z^2 + 8})_{z=0} = \frac{\pi i}{4},$ since $z = \pm 2\sqrt{2}i$ does not lie in the region bounded by C.

(ii) Cosh z is analytic inside and on C, therefore

Given Integral = $\frac{2\pi i}{\underline{3}} (\frac{d^3}{dz^3} \cosh z)_{z=0} = 0$

4. Using Liovuille Theorem, show that the functions exp(z), sin z, cos z, sinh z, cosh z are not bounded in the complex plane *C*.

Solution: All the functions are entire. Had these functions been bounded in C, each would be a constant function (by Liouville Theorem), which they are not.

5. Show that every polynomial P(z) of degree n has exactly n zeros in the complex plane.

Solution: Let $P_n(z)$ be a polynomial of degree $n \ge 1$. and assume that it has no zeros in the complex plane C. Then, the function $\varphi(z) = \frac{1}{P_n(z)}$ (i) is an entire function (ii) is bounded in C (*since* $P_n(z) \to \infty$ as $z \to \infty$) Therefore, by Liouville's Theorem, $\varphi(z)$ is constant. $\Rightarrow P_n(z)$ is also a constant function, a contradiction. Thus, $P_n(z)$ has at least one zero, say a_1 of multiplicity m_1 . If $m_1 = n$, the desired result follows.

If $m_1 \neq n$, the polynomial $\frac{P_n(z)}{(z-a_1)^{m_1}}$, is a non-constant polynomial of degree $n-m_1$ and a repetition of the above arguments gives that it has at least one zero, say a_2 of multiplicity m_2 .

The above process continues till $m_1 + m_2 + ... + m_k = n$ for some natural number $k \ge 1$. It therefore follows that $P_n(z)$ has zeros at $a_1, a_2, ..., a_k$ of respective multiplicities $m_1, m_2, ..., m_k$ such that $m_1 + m_2 + ... + m_k = n$.

6. If *f* is an entire function and $|f(z)| \le MR^{n_0}$ in $|z| \le R$, prove that *f* is a polynomial of degree at most n_0 .

Solution: By Taylor's Theorem, expand $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in $|z| < R_0$. The same expansion is valid for all $R > R_0$. By Cauchy Estimate, $|f^{(n)}(0)| \le \frac{n!M(R)}{R^n}$, where $M(R) = \max_{|z|=R} |f(z)|$

 $\therefore |a_n| \le \frac{MR^{n_0}}{R^n} = MR^{n_0 - n} \to 0 \text{ as } n \to \infty, \text{ if } n > n_0. \Rightarrow f \text{ is a polynomial of degree at most } n_0.$

7. Let f(z) be analytic in $|z| \le R$. Prove that, for 0 < r < R,

$$f(re^{i\varphi}) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{R^2 - r^2}{R^2 + r^2 - 2Rr\cos(\theta - \varphi)} f(\operatorname{Re}^{i\varphi}) \, d\varphi \, \text{ (called Poisson Integral Formula)}$$

Solution: Let |a| < R. By Cauchy Integral Formula, $f(a) = \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{z-a} dz$ (*i*).

Since the point $\frac{R^2}{\overline{a}}$ lies outside the circle |z| = R, by Cauchy Theorem, $0 = \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{z - (R^2/\overline{a})} dz$ (*ii*).

Adding (i) and (ii), $f(a) = \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)(R^2 - a\overline{a})}{(z-a)(R^2 - \overline{a}z)} dz$. Now, letting $a = re^{i\theta}$ and $z = Re^{i\phi}$ in the above

equation, gives

$$f(re^{i\theta}) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(Re^{i\varphi})(R^2 - r^2)}{Re^{i\varphi}(1 - \frac{a}{R}e^{-i\varphi})(R^2 - \overline{a}Re^{i\varphi})} iRe^{i\varphi} d\varphi = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - r^2}{R^2 + r^2 - 2Rr\cos(\theta - \varphi)} f(Re^{i\varphi}) d\varphi.$$

8. (T) Evaluate $\int_{\Gamma} \frac{1}{z^4} dz$, where Γ is the part of clockwise oriented ellipse $\frac{(x-3)^2}{1} + \frac{y^2}{4} = 1$ lying in the upper half-plane $\{z : \operatorname{Im} z > 0\}$.

Solution: Let Γ^* be the clockwise oriented closed curve consisting of the part of given ellipse in upper halfplane and the line segment *L* with initial point (4,0) and end point (2,0). Since the function $1/z^4$ is analytic inside and on Γ^* , $\int_{\Gamma} \frac{1}{z^4} dz = \int_{-L} \frac{1}{z^4} dz = \int_{2}^{4} \frac{1}{x^4} dx = -\frac{1}{3}(x^{-3})_2^4 = \frac{7}{192}$. 9. Find the order of the zero z = 0 for the following functions:

(*i*) $z^2(e^{z^2}-1)$ (**T**)(*ii*) $6\sin z^3 + z^3(z^6-6)$ (**T**)(*iii*) $e^{\sin z} - e^{\tan z}$

Solution:

(i) The first nonzero term in the Taylor series of the given function around z = 0, contains z^4 , therefore its zero at z = 0 is of order 4

(ii) The first nonzero term in the Taylor series of the given function around z = 0, contains z^{15} therefore its zero at z = 0 is of order 15.

(iii) The first nonzero term in the Taylor series of the given function around z = 0, contains z^3 therefore its zero at z = 0 is of order 3.

10. Find the order of all the zeros of the following functions:

(*i*)
$$z \sin z$$
 (**T**) $(ii)(1-e^z)(z^2-4)^3$ (**T**) $(iii) \frac{\sin^3 z}{z}$

Solution:

- (i) zero of order 2 at z = 0, simple zeros at $z = n\pi$, n = nonzero integer.
- (ii) zero of order 3 at $z = \pm 2$, simple zeros at $z = 2n\pi i$, n = nonzero integer.
- (iii) zero of order 2 at z = 0, zeros of order 3 at $z = n\pi$, n = nonzero integer.
- 11. (T)Does there exist a function f(z) (*not identically zero*) that is analytic in |z| < 1 and has zeros at the following indicated set of points ? Why or why not?

(i)
$$S_1 = \{\frac{1}{n} : n \text{ is a natural number}\}$$
 (ii) $S_2 = \{1 - \frac{1}{n} : n \text{ is a natural number}\}$
(iii) $S_3 = \{z : |z| < 1, \operatorname{Re}(z) = 0\}$ (iv) $S_4 = \{z = \frac{1}{2} + iy : -\frac{1}{2} < y < \frac{1}{2}\}$.

Solution:

(i) No, since limit point of S₁ is 0 which lies in |z| < 1, so 0 would be a non-isolated zero of f(z) (ii) Yes, since limit point of S₂ does not lie in |z| < 1 (iii) No, since limit points of S₃ lie in |z| < 1 (iv) No, since limit points of S₄ lie in |z| < 1.

G.P.Kapoor