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Abstract: In the present paper, the stability of Coalescence Hidden variable Fractal Interpolation Sur-
faces(CHFIS) is established. The estimates on error in approximation of the data generating function by
CHFIS are found when there is a perturbation in independent, dependent and hidden variables. It is proved
that any small perturbation in any of the variables of generalized interpolation data results in only small per-
turbation of CHFIS. Our results are likely to be useful in investigations of texture of surfaces arising from
the simulation of surfaces of rocks, sea surfaces, clouds and similar natural objects wherein the generating
function depends on more than one variable.
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1 Introduction

The theory of fractal interpolation has become a powerful tool in applied science and engineering since Barnsley [1] in-
troduced Fractal Interpolation Function (FIF) using the theory of Iterated Function System (IFS). Massopust [8] extended
this concept to Fractal Interpolation Surface (FIS) using IFS wherein he assumed the surface as triangular simplex and
interpolation points on the boundary to be co-planar. In view of lack of flexibility in his construction, Geronimo and
Hardin [6] generalized the construction of FIS by allowing more general boundary data. Subsequently, Xie and Sun [10]
used bivariate functions on rectangular grids with arbitrary contraction factors and without any condition on boundary
points to construct Bivariate FIS. Dalla [5] improvised this construction by using collinear boundary points and proved
that the attractor is continuous FIS. However, all the constructions mentioned above lead to self-similar attractors.

A non-diagonal IFS that generates both self-affine and non-self-affine FIS simultaneously depending on the free vari-
ables and constrained variables on a general set of interpolation data is constructed in [2]. The attractor of such an IFS
is called Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS). Since the CHFIS passes through the given
data points, any small perturbation in the data points results in the perturbation of the corresponding CHFIS.

The construction of a Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) of one variable and in-
vestigation of its stability is studied in [3, 4]. A CHFIF is an important tool in the study of highly uneven curves like
fractures in rocks, seismic fracture, lightening, ECG, etc. However, it can not be applied for the study of highly uneven
surfaces such as surfaces of rocks [10], sea surfaces [9], clouds [11] and many other naturally occuring objects for which
the generating function depends on more than one variable. A CHFIS is a preferred choice for the study of these naturally
occurring objects. The quantification of smoothness of such surfaces in terms of Lipschitz exponent of its corresponding
CHFIS is investigated recently in [7]. The purpose of the present paper is to investigate the stability of such CHFIS.
The estimates on error in approximation of the data generating function by CHFIS are found individually when there is
a perturbation in independent, dependent or hidden variable. These estimates together give the total error estimate on
CHFIS when there is perturbation in all these variables simultaneously. It is proved that any small perturbation in any of
the variables of generalized interpolation data results in only small perturbation of CHFIS. Unlike the case of CHFIF, the
stability of CHFIS is studied with respect to Manhattan metric and requires the perturbations in generalized interpolation
data to be governed by an invariance of ratio condition. Our results are likely to find applications in texture of surfaces of
naturally occurring objects like surfaces of rocks, sea surfaces, clouds, etc..
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A brief introduction of CHFIS is given in Section 2. In Section 3, some auxiliary results that are needed to establish
the stability of CHFIS are derived. Our main stability result is established in Section 4 via stability results found individ-
ually for perturbation in independent variables, the dependent variable and the hidden variable. Finally, these results are
illustrated in Section 5 through simulation of a sample surface with given data as well as with perturbed data obtained by
small variations of concerned variables in the given data.

2 Preliminaries
For the given interpolation data {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . ,𝑀}, where, N, M ∈ ℕ, 𝑧𝑖,𝑗 ∈ (𝑎, 𝑏)
and −∞ < 𝑎 < 𝑏 < ∞, consider the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 =
0, 1, . . . ,𝑀}, where 𝑡𝑖,𝑗 ∈ (𝑐, 𝑑) and −∞ < 𝑐 < 𝑑 < ∞. Set 𝐼 = [𝑥0, 𝑥𝑁 ], 𝐽 = [𝑦0, 𝑦𝑀 ], 𝑆 = 𝐼 × 𝐽, 𝐷 =
(𝑎, 𝑏)× (𝑐, 𝑑), 𝐼𝑛 = [𝑥𝑛−1, 𝑥𝑛], 𝐽𝑚 = [𝑦𝑚−1, 𝑦𝑚] and 𝑆𝑛,𝑚 = 𝐼𝑛 × 𝐽𝑚 for 𝑛 = 1, . . . , 𝑁 and 𝑚 = 1, . . . ,𝑀. Let, the
mappings 𝜙𝑛 : 𝐼 → 𝐼𝑛, 𝜓𝑚 : 𝐽 → 𝐽𝑚 and 𝐹𝑛,𝑚 : 𝑆 ×𝐷 → 𝐷 for 𝑛 = 1, . . . , 𝑁, and 𝑚 = 1, . . . ,𝑀 be defined as
follows:

𝜙𝑛(𝑥) = 𝑥𝑛−1 +
𝑥𝑛 − 𝑥𝑛−1

𝑥𝑁 − 𝑥0
(𝑥− 𝑥0),

𝜓𝑚(𝑦) = 𝑦𝑚−1 +
𝑦𝑚 − 𝑦𝑚−1

𝑦𝑀 − 𝑦0
(𝑦 − 𝑦0),

𝐹𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡) = (𝑒𝑛,𝑚 𝑥+ 𝑓𝑛,𝑚 𝑦 + 𝛼𝑛,𝑚 𝑧 + 𝛽𝑛,𝑚 𝑡+ 𝑔𝑛,𝑚 𝑥𝑦 + 𝑘𝑛,𝑚,

𝑒𝑛,𝑚 𝑥+ 𝑓𝑛,𝑚 𝑦 + 𝛾𝑛,𝑚 𝑡+ 𝑔𝑛,𝑚 𝑥𝑦 + 𝑘𝑛,𝑚).

Here, 𝛼𝑛,𝑚 and 𝛾𝑛,𝑚 are free variables chosen such that ∣𝛼𝑛,𝑚∣ < 1 and ∣𝛾𝑛,𝑚∣ < 1. ∣𝛽𝑛,𝑚∣ is a constrained variable
chosen such that ∣𝛽𝑛,𝑚∣+ ∣𝛾𝑛,𝑚∣ < 1. Let the function 𝐹𝑛,𝑚 satisfy the following join-up condition:

𝐹𝑛,𝑚(𝑥0, 𝑦0, 𝑧0,0, 𝑡0,0) = (𝑧𝑛−1,𝑚−1, 𝑡𝑛−1,𝑚−1)
𝐹𝑛,𝑚(𝑥𝑁 , 𝑦0, 𝑧𝑁,0, 𝑡𝑁,0) = (𝑧𝑛,𝑚−1, 𝑡𝑛,𝑚−1)
𝐹𝑛,𝑚(𝑥0, 𝑦𝑀 , 𝑧0,𝑀 , 𝑡0,𝑀 ) = (𝑧𝑛−1,𝑚, 𝑡𝑛−1,𝑚)

𝐹𝑛,𝑚(𝑥𝑁 , 𝑦𝑀 , 𝑧𝑁,𝑀 , 𝑡𝑁,𝑀 ) = (𝑧𝑛,𝑚, 𝑡𝑛,𝑚).

⎫⎬⎭ (1)

Using the condition (1), the values of 𝑒𝑛,𝑚, 𝑓𝑛,𝑚, 𝑔𝑛,𝑚, 𝑘𝑛,𝑚, 𝑒𝑛,𝑚, 𝑓𝑛,𝑚, 𝑔𝑛,𝑚 and 𝑘𝑛,𝑚 are determined as follows:

𝑔𝑛,𝑚 = 𝑧𝑛−1,𝑚−1−𝑧𝑛−1,𝑚−𝑧𝑛,𝑚−1+𝑧𝑛,𝑚−𝛼𝑛,𝑚𝑧𝑒𝑣𝑎−𝛽𝑛,𝑚𝑡𝑒𝑣𝑎
(𝑥0−𝑥𝑁 )(𝑦0−𝑦𝑀 )

𝑒𝑛,𝑚 =
𝑧𝑛−1,𝑚−1−𝑧𝑛,𝑚−1−𝛼𝑛,𝑚(𝑧0,0−𝑧𝑁,0)−𝛽𝑛,𝑚(𝑡0,0−𝑡𝑁,0)−𝑔𝑛,𝑚(𝑥0−𝑥𝑁 )𝑦0

(𝑥0−𝑥𝑁 )

𝑓𝑛,𝑚 =
𝑧𝑛−1,𝑚−1−𝑧𝑛−1,𝑚−𝛼𝑛,𝑚(𝑧0,0−𝑧0,𝑀 )−𝛽𝑛,𝑚(𝑡0,0−𝑡0,𝑀 )−𝑔𝑛,𝑚(𝑦0−𝑦𝑀 )𝑥0

(𝑦0−𝑦𝑀 )

𝑘𝑛,𝑚 = 𝑧𝑛,𝑚 − 𝑒𝑛,𝑚𝑥𝑁 − 𝑓𝑛,𝑚𝑦𝑀 − 𝛼𝑛,𝑚𝑧𝑁,𝑀 − 𝛽𝑛,𝑚𝑡𝑁,𝑀 − 𝑔𝑛,𝑚𝑥𝑁𝑦𝑀
𝑔𝑛,𝑚 = 𝑡𝑛−1,𝑚−1−𝑡𝑛−1,𝑚−𝑡𝑛,𝑚−1+𝑡𝑛,𝑚−𝛾𝑛,𝑚 𝑡𝑒𝑣𝑎

(𝑥0−𝑥𝑁 )(𝑦0−𝑦𝑀 )

𝑒𝑛,𝑚 =
𝑡𝑛−1,𝑚−1−𝑡𝑛,𝑚−1−𝛾𝑛,𝑚(𝑡0,0−𝑡𝑁,0)−𝑔𝑛,𝑚(𝑥0−𝑥𝑁 )𝑦0

(𝑥0−𝑥𝑁 )

𝑓𝑛,𝑚 =
𝑡𝑛−1,𝑚−1−𝑡𝑛−1,𝑚−𝛾𝑛,𝑚(𝑡0,0−𝑡0,𝑀 )−𝑔𝑛,𝑚(𝑦0−𝑦𝑀 )𝑥0

(𝑦0−𝑦𝑀 )

𝑘𝑛,𝑚 = 𝑡𝑛,𝑚 − 𝑒𝑛,𝑚𝑥𝑁 − 𝑓𝑛,𝑚𝑦𝑀 − 𝛾𝑛,𝑚𝑡𝑁,𝑀 − 𝑔𝑛,𝑚𝑥𝑁𝑦𝑀

⎫⎬⎭

(2)

where 𝑧𝑒𝑣𝑎 = 𝑧𝑁,𝑀−𝑧𝑁,0−𝑧0,𝑀+𝑧0,0 and 𝑡𝑒𝑣𝑎 = 𝑡𝑁,𝑀−𝑡𝑁,0−𝑡0,𝑀+𝑡0,0.Now define the functions𝐺𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡)
and 𝜔𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡) as

𝐺𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡) =

⎧⎨⎩ 𝐹𝑛+1,𝑚(𝑥0, 𝑦, 𝑧, 𝑡), 𝑥 = 𝑥𝑁 , 𝑛 = 1, . . . , 𝑁 − 1, 𝑚 = 1, . . . ,𝑀
𝐹𝑛,𝑚+1(𝑥, 𝑦0, 𝑧, 𝑡), 𝑦 = 𝑦𝑁 , 𝑛 = 1, . . . , 𝑁 𝑚 = 1, . . . ,𝑀 − 1
𝐹𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡), otherwise.

and 𝜔𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡) = (𝜙𝑛(𝑥), 𝜓𝑚(𝑦), 𝐺𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡)). Then, {ℝ4, 𝜔𝑛,𝑚 : 𝑛 = 1, . . . 𝑁 ; 𝑚 = 1, . . .𝑀} constitutes an
IFS for the generalized interpolation data △. It is known [2] that there exists a metric 𝜏 on ℝ4, equivalent to the Euclidean
metric, such that the IFS is hyperbolic with respect to 𝜏 and there exists a unique non-empty compact set 𝐺 ⊆ ℝ4 such

that 𝐺 =
𝑁∪

𝑛=1

𝑀∪
𝑚=1

𝜔𝑛,𝑚(𝐺). The set 𝐺 is called the attractor of the IFS for the given interpolation data. Further, G is the

graph of a continuous function 𝐹 : 𝑆 → ℝ2 such that 𝐹 (𝑥𝑖, 𝑦𝑗) = (𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) for 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . ,𝑀 i.e.
𝐺 = {(𝑥, 𝑦, 𝐹 (𝑥, 𝑦)) : (𝑥, 𝑦) ∈ 𝑆 and 𝐹 (𝑥, 𝑦) = (𝑧(𝑥, 𝑦), 𝑡(𝑥, 𝑦))}.
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Definition 1 Let 𝐹 (𝑥, 𝑦) be written component-wise as 𝐹 (𝑥, 𝑦) = (𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)). The Coalescence Hidden-
variable Fractal Interpolation Surface (CHFIS) for the given interpolation data {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 =
0, 1, . . . ,𝑀} is defined as the surface 𝑧 = 𝐹1(𝑥, 𝑦) in ℝ3.

It is easily seen that the function 𝐹 (𝑥, 𝑦) described above satisfies

𝐹 (𝑥, 𝑦) = 𝐺𝑛,𝑚(𝜙−1
𝑛 (𝑥), 𝜓−1

𝑚 (𝑦), 𝐹 (𝜙−1
𝑛 (𝑥), 𝜓−1

𝑚 (𝑦)))

for all (𝑥, 𝑦) ∈ 𝑆𝑛,𝑚, 𝑛 = 1, 2, . . . , 𝑁 and 𝑚 = 1, 2, . . . ,𝑀 . Consequently, if the function 𝐺𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡) is written
component-wise as 𝐺𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡) = (𝐺1

𝑛,𝑚(𝑥, 𝑦), 𝐺2
𝑛,𝑚(𝑥, 𝑦)), then

𝐹1(𝜙𝑛(𝑥), 𝜓𝑚(𝑦)) = 𝐺1
𝑛,𝑚(𝑥, 𝑦, 𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)) = 𝛼𝑛,𝑚 𝐹1(𝑥, 𝑦) + 𝛽𝑛,𝑚 𝐹2(𝑥, 𝑦) + 𝑝𝑛,𝑚(𝑥, 𝑦)

𝐹2(𝜙𝑛(𝑥), 𝜓𝑚(𝑦)) = 𝐺2
𝑛,𝑚(𝑥, 𝑦, 𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)) = 𝛾𝑛,𝑚 𝐹2(𝑥, 𝑦) + 𝑞𝑛,𝑚(𝑥, 𝑦)

where

𝑝𝑛,𝑚(𝑥, 𝑦) = 𝑒𝑛,𝑚 𝑥+ 𝑓𝑛,𝑚 𝑦 + 𝑔𝑛,𝑚 𝑥𝑦 + 𝑘𝑛,𝑚
𝑞𝑛,𝑚(𝑥, 𝑦) = 𝑒𝑛,𝑚 𝑥+ 𝑓𝑛,𝑚 𝑦 + 𝑔𝑛,𝑚 𝑥𝑦 + 𝑘𝑛,𝑚.

}
(3)

3 Some Auxiliary Results
In this section, we develop some results that are needed in the sequel for investigating the stability of CHFIS in Section 4.

Let −∞ < 𝑥∗0 < 𝑥∗1 < . . . < 𝑥∗𝑁 and −∞ < 𝑦∗0 < 𝑦∗1 < . . . < 𝑦∗𝑁 be a bounded set of real numbers in 𝑥 and 𝑦 axis.
Denote 𝐼∗ = [𝑥∗0, 𝑥

∗
𝑁 ], 𝐽∗ = [𝑦∗0 , 𝑦

∗
𝑀 ], 𝑆∗ = 𝐼∗ × 𝐽∗ 𝐼∗𝑛 = [𝑥∗𝑛−1, 𝑥

∗
𝑛], 𝐽

∗
𝑚 = [𝑦∗𝑚−1, 𝑦

∗
𝑚] and 𝑆∗

𝑛,𝑚 = 𝐼∗𝑛 × 𝐽∗
𝑚 for

𝑛 = 1, . . . , 𝑁 and 𝑚 = 1, . . . ,𝑀.. Similar to 𝜙𝑛 and 𝜓𝑚 in section 2, we construct homeomorphisms 𝜙∗𝑛 and 𝜓∗
𝑚 where

𝜙∗𝑛 : 𝐼∗ → 𝐼∗𝑛 and 𝜓∗
𝑚 : 𝐽∗ → 𝐽∗

𝑚. Now, define the map 𝑅𝑛,𝑚 : 𝑆𝑛,𝑚 −→ 𝑆∗
𝑛,𝑚 by

𝑅𝑛,𝑚(𝑥, 𝑦) =

(
𝑥∗𝑛−1 +

𝑥∗𝑛 − 𝑥∗𝑛−1

𝑥𝑛 − 𝑥𝑛−1
(𝑥− 𝑥𝑛−1), 𝑦

∗
𝑚−1 +

𝑦∗𝑚 − 𝑦∗𝑚−1

𝑦𝑚 − 𝑦𝑚−1
(𝑦 − 𝑦𝑚−1)

)
and the linear piecewise map 𝑅 : 𝑆 → 𝑆∗ as

𝑅(𝑥, 𝑦) = 𝑅𝑛,𝑚(𝑥, 𝑦) for all 𝑥 ∈ 𝐼𝑛 𝑎𝑛𝑑 𝑦 ∈ 𝐽𝑚 (4)

Similarly, the maps 𝐾𝑛,𝑚 : 𝑆∗
𝑛,𝑚 −→ 𝑆𝑛,𝑚 and 𝐾 : 𝑆∗ → 𝑆 are defined as

𝐾𝑛,𝑚(𝑥∗, 𝑦∗) =
(
𝑥𝑛−1 +

𝑥𝑛 − 𝑥𝑛−1

𝑥∗𝑛 − 𝑥∗𝑛−1

(
𝑥∗ − 𝑥∗𝑛−1

)
, 𝑦𝑚−1 +

𝑦𝑚 − 𝑦𝑚−1

𝑦∗𝑚 − 𝑦∗𝑚−1

(
𝑦∗ − 𝑦∗𝑚−1

))
and

𝐾(𝑥∗, 𝑦∗) = 𝐾𝑛,𝑚(𝑥∗, 𝑦∗) for all 𝑥∗ ∈ 𝐼∗𝑛 𝑎𝑛𝑑 𝑦∗ ∈ 𝐽∗
𝑚. (5)

It is easily seen that 𝐾 = 𝑅−1. Set 𝜉𝑛,𝑚(𝑥, 𝑦) = (𝜙𝑛(𝑥), 𝜓𝑚(𝑦)) and 𝜉∗𝑛,𝑚(𝑥, 𝑦) = (𝜙∗𝑛(𝑥), 𝜓
∗
𝑚(𝑦)). We assume the

following invariance of ratio condition for any two sets △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . ,𝑀}
and △∗ = {(𝑥∗𝑖 , 𝑦∗𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . ,𝑀} of the generalized interpolation data points :

(𝑥0 − 𝑥𝑁 )

(𝑥∗0 − 𝑥∗𝑁 )
=

(𝑥𝑛−1 − 𝑥𝑛)

(𝑥∗𝑛−1 − 𝑥∗𝑛)
and

(𝑦0 − 𝑦𝑀 )

(𝑦∗0 − 𝑦∗𝑀 )
=

(𝑦𝑚−1 − 𝑦𝑚)

(𝑦∗𝑚−1 − 𝑦∗𝑚)
(6)

By (6), we observe that for 𝑛 = 1, 2, . . . , 𝑁 and 𝑚 = 1, 2, . . . ,𝑀 ,

𝜉∗𝑛,𝑚(𝑥∗, 𝑦∗) = (𝑅 ∘ 𝜉𝑛,𝑚 ∘𝐾) (𝑥∗, 𝑦∗)
𝐹 ∗
𝑛,𝑚(𝑥∗, 𝑦∗, 𝑧, 𝑡) = 𝐹𝑛,𝑚 (𝐾(𝑥∗, 𝑦∗), 𝑧, 𝑡)

}
(7)

Thus, the dynamical systems {𝑆; 𝜉𝑛,𝑚} and {𝑆∗; 𝜉∗𝑛,𝑚} are equivalent. Using this equivalence of dynamical systems, we
first prove the following proposition needed for establishing the smoothness of CHFIS in Proposition 2:
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Proposition 1 Let △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . ,𝑀} and △∗ =
{(𝑥∗𝑖 , 𝑦∗𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . ,𝑀} be any two sets of generalized interpolation data for the
IFS {ℝ4;𝜔𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡), 𝑛 = 1, . . . , 𝑁 ;𝑚 = 1, . . . ,𝑀} and {ℝ4;𝜔∗

𝑛,𝑚(𝑥∗, 𝑦∗, 𝑧, 𝑡), 𝑛 = 1, . . . , 𝑁 ;𝑚 = 1, . . . ,𝑀}
respectively, with the same choice of free variables and constrained variable. Let the points of △ and △∗ satisfy the
invariance of ratio condition (6). Then, 𝐹 , as defined in Section 2, is the CHFIS associated with {ℝ4;𝜔𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡), 𝑛 =
1, . . . , 𝑁 ;𝑚 = 1, . . . ,𝑀} iff 𝐹 ∘ 𝑅−1 is the CHFIS associated with {ℝ4;𝜔∗

𝑛,𝑚(𝑥∗, 𝑦∗, 𝑧, 𝑡), 𝑛 = 1, . . . , 𝑁 ;𝑚 =
1, . . . ,𝑀}, where R is defined by (4).

Proof. Let 𝐹 (𝑥, 𝑦) be the CHFIS associated with the IFS {ℝ4;𝜔𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡), 𝑛 = 1, . . . , 𝑁,𝑚 = 1, . . . ,𝑀}. It follows
from (7) that,

𝐹 ∗
𝑛,𝑚

(
𝜉∗−1
𝑛,𝑚(𝑥∗, 𝑦∗), 𝐹 ∘𝑅−1(𝜉∗−1

𝑛,𝑚(𝑥∗, 𝑦∗))
)
= 𝐹𝑛,𝑚

(
𝐾 ∘ 𝜉∗−1

𝑛,𝑚(𝑥∗, 𝑦∗), 𝐹 ∘𝑅−1(𝜉∗−1
𝑛,𝑚(𝑥∗, 𝑦∗))

)
= 𝐹𝑛,𝑚

(
𝜉−1
𝑛,𝑚 ∘𝐾(𝑥∗, 𝑦∗), 𝐹 (𝜉−1

𝑛,𝑚 ∘𝐾(𝑥∗, 𝑦∗))
)

= 𝐹𝑛,𝑚

(
𝜙−1
𝑛 (𝑥), 𝜓−1

𝑚 (𝑦), 𝐹 (𝜙−1
𝑛 (𝑥), 𝜓−1

𝑚 (𝑦))
)

= 𝐹 (𝑥, 𝑦)

= 𝐹 ∘𝑅−1(𝑥∗, 𝑦∗)

Thus, 𝐹 ∘𝑅−1 is the CHFIS associated with {ℝ4;𝜔∗
𝑛,𝑚(𝑥∗, 𝑦∗, 𝑧, 𝑡), 𝑛 = 1, . . . , 𝑁,𝑚 = 1, . . . ,𝑀}.

Conversely, assume that the above identity holds for CHFIS 𝐹 ∘𝑅−1. Then, for 𝑥 ∈ 𝐼𝑛 and 𝑦 ∈ 𝐽𝑚,

𝐹𝑛,𝑚

(
𝜉−1
𝑛,𝑚(𝑥, 𝑦), 𝐹 (𝜉−1

𝑛,𝑚(𝑥, 𝑦))
)
= 𝐹 ∗

𝑛,𝑚

(
𝐾−1 ∘ 𝜉−1

𝑛,𝑚(𝑥, 𝑦), 𝐹 (𝜉−1
𝑛,𝑚(𝑥, 𝑦))

)
= 𝐹 ∗

𝑛,𝑚

(
𝜉∗−1
𝑛,𝑚 ∘𝑅(𝑥, 𝑦), 𝐹 ∘𝑅−1(𝜉∗−1

𝑛,𝑚 ∘𝑅(𝑥, 𝑦)))
= 𝐹 ∗

𝑛,𝑚

(
𝜙∗−1
𝑛 (𝑥∗), 𝜓∗−1

𝑚 (𝑦∗), 𝐹 ∘𝑅−1(𝜙∗−1
𝑛 (𝑥∗), 𝜓∗−1

𝑚 (𝑦∗))
)

= 𝐹 ∘𝑅−1(𝑥∗, 𝑦∗)
= 𝐹 (𝑥, 𝑦)

Hence, 𝐹 (𝑥, 𝑦) is the CHFIS associated with the IFS {ℝ4;𝜔𝑛,𝑚(𝑥, 𝑦, 𝑧, 𝑡), 𝑛 = 1, . . . , 𝑁 and 𝑚 = 1, . . . ,𝑀}.

Let 𝑋 = (𝑥1, 𝑥2) , 𝑌 = (𝑦1, 𝑦2) ∈ ℝ2 and 𝑑𝑀 (𝑋,𝑌 ) =
2∑

𝑖=1

∣𝑥𝑖 − 𝑦𝑖∣ be the Manhattan metric on ℝ2. A function

𝐹 : ℝ2 → ℝ is said to be a Lipschitz function of order 𝛿 (written as 𝐹 ∈ 𝐿𝑖𝑝 𝛿) if it satisfies the condition ∣𝐹 (𝑋) −
𝐹 (𝑌 )∣ ≤ 𝑐 [𝑑𝑀 (𝑋,𝑌 )]

𝛿
, 𝛿 ∈ (0, 1] and 𝑐 is a real number. The real number 𝛿 is called the Lipschitz exponent and c is

called the Lipschitz constant.
Note that the definition of Lipschitz exponent depends a priori on Manhattan Metric. However, since on finite dimen-

sional vector space, all metrics are equivalent; the above definition of Lipschitz exponent agrees with the definition of
Lipschitz exponent with respect to Euclidean Metric. We also observe that the invariance of ratio conditions (6) are equiv-
alent to requiring the Lipschitz constants for functions 𝜙𝑛 and 𝜙∗𝑛 as well as those for 𝜓𝑚 and 𝜓∗

𝑚 to be equal. This gives
another reason for the dynamical systems {𝑆; 𝜉𝑛,𝑚} and {𝑆∗; 𝜉∗𝑛,𝑚} to be equivalent as observed earlier. The dynamics
of {𝑆; 𝜉𝑛,𝑚} and {𝑆∗; 𝜉∗𝑛,𝑚} is entirely determined by these Lipschitz constants.

Let 𝐼𝑟1,...,𝑟𝑛 ≡ 𝜙𝑟𝑛(0) + ∣𝐼𝑟𝑛 ∣ 𝐼𝑟1,...,𝑟𝑛−1
= 𝜙𝑟𝑛 ∘ . . . ∘ 𝜙𝑟1(𝐼) and 𝐽𝑠1,...,𝑠𝑛 ≡ 𝜓𝑠𝑛(0) + ∣𝐽𝑠𝑛 ∣ 𝐽𝑠1,...,𝑠𝑛−1

=
𝜓𝑠𝑛 ∘ . . .∘𝜓𝑠1(𝐽), where ∣𝐼𝑟𝑖 ∣ and ∣𝐽𝑠𝑗 ∣ denote the length of the intervals 𝐼𝑟𝑖 and 𝐽𝑠𝑗 respectively. Let 𝑏𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛 =∫
𝐼𝑟1,...,𝑟𝑛

∫
𝐽𝑠1,...,𝑠𝑛

𝐹1(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

Define

𝑄𝑛(𝐹1(𝑋)) :=
𝑁∑

𝑟1,...,𝑟𝑛=1

𝑁∑
𝑠1,...,𝑠𝑛=1

(
𝜒𝑆𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛

(𝑋)
𝑏𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛

∣𝑆𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛 ∣

)

where, 𝑆𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛 = 𝐼𝑟1,...,𝑟𝑛 × 𝐽𝑠1,...,𝑠𝑛 and 𝜒𝑆𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛
(𝑋) =

{
1, 𝑋 ∈ 𝑆𝑟1,...,𝑟𝑛,𝑠1,...,𝑠𝑛

0, otherwise.

It is known [7] that 𝑄𝑛(𝐹1(𝑋)) converges to 𝐹1(𝑋) uniformly with respect to Manhattan metric. Using this fact and
finding a bound on maximum distance between 𝑄𝑛(𝐹1(𝑋)) and 𝑄𝑛(𝐹1(𝑋̄)), the Lipschitz exponent of CHFIS 𝐹1 is
found in the following proposition when 𝑝𝑛,𝑚 and 𝑞𝑛,𝑚, given by (3), belong to 𝐿𝑖𝑝 1.

Proposition 2 Let 𝐹1(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 ≤ 1
2 , be the CHFIS for the interpolation data △0 = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 =

0, 1, . . . , 𝑁} where, 𝑥0 = 𝑦0 = 0 and 𝑥𝑁 = 𝑦𝑁 = 1/2. Then, 𝐹1 ∈ 𝐿𝑖𝑝 𝛿 for some 𝛿 ∈ (0, 1].
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Proof. Using the values of 𝑒𝑛,𝑚, 𝑓𝑛,𝑚, 𝑔𝑛,𝑚, 𝑘𝑛,𝑚, 𝑒𝑛,𝑚, 𝑓𝑛,𝑚, 𝑔𝑛,𝑚 and 𝑘𝑛,𝑚 as defined in (2), we find that, for
0 < 𝑥 < 𝑥̄ < 1

2 and 0 < 𝑦 < 𝑦 < 1
2 ,

∣𝑝𝑛,𝑚(𝑥, 𝑦)− 𝑝𝑛,𝑚(𝑥̄, 𝑦)∣ ≤ 8 ⋅ [(1 + 𝛼) 𝑍𝑚𝑎𝑥 + 𝛽 𝑇𝑚𝑎𝑥] ⋅ [∣𝑥− 𝑥̄∣+ ∣𝑦 − 𝑦∣]
∣𝑞𝑛,𝑚(𝑥, 𝑦)− 𝑞𝑛,𝑚(𝑥̄, 𝑦)∣ ≤ 8 ⋅ [(1 + 𝛾) 𝑇𝑚𝑎𝑥] ⋅ [∣𝑥− 𝑥̄∣+ ∣𝑦 − 𝑦∣]

where, 𝑍𝑚𝑎𝑥 = max{∣𝑧𝑖,𝑗 − 𝑧𝑘,𝑙∣ } and 𝑇𝑚𝑎𝑥 = max{∣𝑡𝑖,𝑗 − 𝑡𝑘,𝑙∣ } for 𝑖, 𝑗, 𝑘, 𝑙 = 0, . . . , 𝑁 . Therefore, the bound on
∣𝑄𝑛(𝐹1(𝑋))−𝑄𝑛(𝐹1(𝑋̄))∣ is obtained as

∣𝑄𝑛(𝐹1(𝑋))−𝑄𝑛(𝐹1(𝑋̄))∣

≤𝑀
[
𝑑𝑀 (𝑋, 𝑋̄)

]{
[1 + ( Ω̄) + . . .+ ( Ω̄)(𝑚−2)]

+ ∣𝛽∣ ⋅ [( Γ̄)[1 + . . .+ ( Ω̄)(𝑚−4)] + ( Γ̄)2[1 + . . .+ ( Ω̄)(𝑚−5)] + . . .+ ( Γ̄)𝑚−3]

}
(8)

where Ω̄ = max{
∣∣∣ 𝛼𝑛,𝑚

∣𝑆𝑛,𝑚∣
∣∣∣ : 𝑛,𝑚 = 1, 2, . . . , 𝑁} and Γ̄ = max{

∣∣∣ 𝛾𝑛,𝑚

∣𝑆𝑛,𝑚∣
∣∣∣ : 𝑛,𝑚 = 1, 2, . . . , 𝑁}. The above inequality (8)

is similar to the Inequality 4.1 of [7] except that, in this case we have, Ω̄ = Ω = Θ and Γ̄ = Γ. By employing the same
technique of proof here and using the inequalities 0 < −(∣𝑥∣+ ∣𝑦∣)𝜏 log(∣𝑥∣+ ∣𝑦∣) ≤ 1

𝜏𝑒 and 0 < (∣𝑥∣+ ∣𝑦∣)𝜏 (log(∣𝑥∣+
∣𝑦∣))2 ≤ 4

𝜏2𝑒2 , we find that, for different magnitudes of Ω̄ and Γ̄ (Ω̄ > 1, Ω̄ = 1 or Ω̄ < 1; Γ̄ > 1, Γ̄ = 1 or Γ̄ < 1), the

bound on ∣𝑄𝑛(𝐹1(𝑋))−𝑄𝑛(𝐹1(𝑋̄))∣ is obtained as ∣𝑄𝑛(𝐹1(𝑋) − 𝑄𝑛(𝐹1(𝑋̄))∣ ≤ 𝑀
[
𝑑𝑀 (𝑋, 𝑋̄)

]𝛿
for some 𝛿 ∈ (0, 1].

Using the fact 𝑄𝑛(𝐹1(𝑋)) converges to 𝐹1(𝑋) uniformly with respect to Manhattan metric, we get 𝐹1 ∈ 𝐿𝑖𝑝 𝛿.

Corollary 3 Let 𝐹1 be the CHFIS for the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} .
Then, there exist constants 𝐾̄ and 𝛿, independent of 𝑧𝑛,𝑚 and 𝑡𝑛,𝑚, such that

∣𝑄𝑛(𝐹1(𝑋))−𝑄𝑛(𝐹1(𝑋̄))∣ ≤𝑀𝐾̄
[
𝑑𝑀 (𝑋, 𝑋̄)

]𝛿
(9)

where, 𝑋 = (𝑥, 𝑦) and 𝑋̄ = (𝑥̄, 𝑦).

Proof. Define a linear homeomorphism 𝑅 : 𝑆 −→ [0, 12 ] × [0, 12 ] that transforms the given interpolation data △ to the
data △∗

0 = {(0, 0, 𝑧0,0, 𝑡0,0), (𝑥∗1, 0, 𝑧1,0, 𝑡1,0), . . . , ( 12 , 0, 𝑧𝑁,0, 𝑡𝑁,0),
(0, 𝑦∗1 , 𝑧0,1, 𝑡0,1), . . . , (0,

1
2 , 𝑧0,𝑁 , 𝑡0,𝑁 ), . . . , ( 12 ,

1
2 , 𝑧𝑁,𝑁 , 𝑡𝑁,𝑁 )}. Proposition (2) applied on the data △∗

0 gives ∣𝑄𝑛(𝐹1 ∘
𝑅−1(𝑋∗)) − 𝑄𝑛(𝐹1 ∘ 𝑅−1(𝑋∗))∣ ≤ 𝑀

[
𝑑𝑀 (𝑋∗, 𝑋∗)

]𝛿
. Now, using Proposition (1) with △ and △∗

0, the corollary
follows.

4 Stability of CHFIS
To prove the main stability result of CHFIS, we need to investigate its stability with respect to perturbations in independent
variables, the dependent variable and the hidden variable of the generalized interpolation data. We develop these results
first.

The following theorem gives the effect on stability of CHFIS due to perturbation in independent variables:

Theorem 4 Let 𝐹1 and 𝐺1, with the same choice of free variables and constrained variable, be CHFIS respectively for
the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} and △∗ = {(𝑥∗𝑖 , 𝑦∗𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 =
0, 1, . . . , 𝑁} that satisfy the the invariance of ratio condition (6) and 𝑆∗ ⊂ 𝑆, where 𝑆∗ = [𝑥∗0, 𝑥

∗
𝑁 ] × [𝑦∗0 , 𝑦

∗
𝑀 ] and

𝑆 = [𝑥0, 𝑥𝑁 ]× [𝑦0, 𝑦𝑀 ]. Then,

∥𝐹1 −𝐺1∥∞
≤ 𝑀̄

[
2𝛽𝛾

(1− 𝛼)(1− 𝛾)
+

(1 + 𝛼)

(1− 𝛼)

]
max

{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣)𝛿 : 𝑛,𝑚 = 0, . . . , 𝑁

}
(10)

Proof. Let the function 𝐺(𝑥, 𝑦) corresponding to the generalized interpolation points △∗ be defined as 𝐺(𝑥, 𝑦) =
𝐺∗

𝑛,𝑚

(
𝜙∗−1
𝑛 (𝑥), 𝜓∗−1

𝑚 (𝑦), 𝐺(𝜙∗−1
𝑛 (𝑥), 𝜓∗−1

𝑚 (𝑦))
)

for 𝑥 ∈ [𝑥∗𝑛−1, 𝑥
∗
𝑛] and 𝑦 ∈ [𝑦∗𝑚−1, 𝑦

∗
𝑚]. By (6) and (7), we observe,

𝐺1 (𝑅(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))) = 𝐹 1
𝑛,𝑚 (𝑥, 𝑦,𝐺 ∘𝑅(𝑥, 𝑦))

= 𝛼𝑛,𝑚 (𝐺1 ∘𝑅)(𝑥, 𝑦) + 𝛽𝑛,𝑚 (𝐺2 ∘𝑅)(𝑥, 𝑦) + 𝑒𝑛,𝑚 𝑥+ 𝑓𝑛,𝑚 𝑦 + 𝑔𝑛,𝑚 𝑥𝑦 + 𝑘𝑛,𝑚

𝐺2 (𝑅(𝜙𝑛(𝑥), 𝜓𝑚(𝑦)) = 𝐹𝑛,𝑚 (𝑥, 𝑦,𝐺 ∘𝑅(𝑥, 𝑦))
= 𝛾𝑛,𝑚 (𝐺2 ∘𝑅)(𝑥, 𝑦) + 𝑒𝑛,𝑚 𝑥+ 𝑓𝑛,𝑚 𝑦 + 𝑔𝑛,𝑚 𝑥𝑦 + 𝑘𝑛,𝑚

IJNS homepage: http://www.nonlinearscience.org.uk/



270 International Journal of NonlinearScience,Vol.9(2010),No.3,pp. 265-275

Thus, we have,

∣𝐺1(𝑅(𝜙𝑛(𝑥), 𝜓𝑚(𝑦)))− 𝐹1(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))∣
≤ ∣𝛼𝑛,𝑚∣ ∣𝐺1 ∘𝑅(𝑥, 𝑦)− 𝐹1(𝑥, 𝑦)∣+ ∣𝛽𝑛,𝑚∣ ∣𝐺2 ∘𝑅(𝑥, 𝑦)− 𝐹2(𝑥, 𝑦)∣
≤ ∣𝛼∣ ∣𝐺1 ∘𝑅(𝑥, 𝑦)− 𝐹1 ∘𝑅(𝑥, 𝑦)∣+ ∣𝛼∣ ∣𝐹1 ∘𝑅(𝑥, 𝑦)− 𝐹1(𝑥, 𝑦)∣+ ∣𝛽∣ ∣𝐺2 ∘𝑅(𝑥, 𝑦)− 𝐹2(𝑥, 𝑦)∣

Using Proposition 2 and Corollary 3, it follows that there exist constants 𝑀̄ and 𝛿 which are independent of 𝑧𝑛,𝑚 and
𝑡𝑛,𝑚 such that ∣𝐹1(𝑋) − 𝐹1(𝑋̄)∣ ≤ 𝑀̄ 𝑑𝑀 (𝑋, 𝑋̄)𝛿 where, 𝑋 = (𝑥, 𝑦) and 𝑋̄ = (𝑥̄, 𝑦). Since (𝑥, 𝑦) ∈ 𝑆 implies
(𝑥, 𝑦) ∈ 𝑆𝑛,𝑚 for some 𝑛,𝑚 = 1, . . . , 𝑁 , it is easily seen that 𝑅(𝑥, 𝑦) ∈ 𝑆∗

𝑛,𝑚 which in turn gives 𝑑𝑀 (𝑋,𝑅(𝑋)) ≤
max{(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣) : 𝑛,𝑚 = 0, 1, . . . , 𝑁}. Thus, the last inequality reduces to

∥𝐺1 ∘𝑅− 𝐹1∥∞ ≤ ∣𝛼∣ ∥𝐺1 − 𝐹1∥∞ + ∣𝛽∣ ∥𝐺2 ∘𝑅− 𝐹2∥∞
+ ∣𝛼∣ 𝑀̄ max

{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣)𝛿 : 𝑛,𝑚 = 0, 1, . . . , 𝑁

}
Now, ∥𝐺1 − 𝐹1∥∞ ≤ ∥𝐺1 − 𝐹1 ∘𝑅−1∥∞ + ∥𝐹1 ∘𝑅−1 − 𝐹1∥∞. Therefore,

∥𝐺1 − 𝐹1∥∞ ≤ 𝛽

(1− 𝛼)
∥𝐺2 ∘𝑅− 𝐹2∥∞

+
(1 + 𝛼)

(1− 𝛼)
𝑀̄ max

{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣)𝛿 : 𝑛,𝑚 = 0, 1, . . . , 𝑁

}
(11)

In order to find an upper bound of ∥𝐺2 ∘𝑅− 𝐹2∥∞ in (11) , we observe that,

∣𝐺2 ∘𝑅(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))− 𝐹2(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))∣

≤ ∣𝛾∣
{
∣𝐺2 ∘𝑅(𝑥, 𝑦)− 𝐹2 ∘𝑅(𝑥, 𝑦)∣+ ∣𝐹2 ∘𝑅(𝑥, 𝑦)− 𝐹2(𝑥, 𝑦)∣

}
The above inequality holds for all 𝑛,𝑚 = 1, 2 . . . 𝑁 . So,

∥𝐺2 ∘𝑅− 𝐹2∥∞ ≤ ∣𝛾∣ ∥𝐺2 − 𝐹2∥∞ + ∣𝛾∣ 𝑀̄ max
{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣)𝛿 : 𝑛,𝑚 = 0, . . . , 𝑁

}
Hence,

∥𝐺2 − 𝐹2∥∞ ≤ 𝑀̄
(1 + 𝛾)

(1− 𝛾)
max

{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣)𝛿 : 𝑛,𝑚 = 0, . . . , 𝑁

}
Therefore,

∥𝐺2 ∘𝑅− 𝐹2∥∞ ≤ 𝑀̄
(2𝛾)

(1− 𝛾)
max

{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣)𝛿 : 𝑛,𝑚 = 0, 1, . . . , 𝑁

}
(12)

Substituting inequality (12) in inequality (11), we get the required bounds.
The following theorem gives stability of CHFIS when there is a perturbation in the dependent variable.

Theorem 5 Let 𝐹1 and 𝐺1, with the same choice of free variables and constrained variable, be CHFIS respectively for
the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} and △∗ = {(𝑥𝑖, 𝑦𝑗 , 𝑧∗𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 =
0, 1, . . . , 𝑁}. Then,

∥𝐹1 −𝐺1∥∞ ≤ 4(1 + 𝛼)

(1− 𝛼)
max

{
∣𝑧𝑛,𝑚 − 𝑧∗𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁

}
(13)

Proof. In view of Proposition 1, we may assume [𝑥0, 𝑥𝑁 ] × [𝑦0, 𝑦𝑁 ] = [0, 12 ] × [0, 12 ]. Since the independent variables
and hidden variable are same in both the interpolation data, the self affine FIS are the same i.e 𝐹2(𝑥, 𝑦) = 𝐺2(𝑥, 𝑦). The
value of 𝑒𝑛,𝑚, 𝑓𝑛,𝑚, 𝑔𝑛,𝑚, 𝑘𝑛,𝑚 differs from 𝑒∗𝑛,𝑚, 𝑓

∗
𝑛,𝑚, 𝑔

∗
𝑛,𝑚, 𝑘

∗
𝑛,𝑚 as the perturbation occurs in dependent variable.

Therefore, for 𝑛,𝑚 = 1, 2, . . . , 𝑁,

∣𝐹1(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))−𝐺1(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))∣
≤ ∣𝛼∣ ∣𝐹1(𝑥, 𝑦)−𝐺1(𝑥, 𝑦)∣

+ (1 + 𝛼)

[
2∣𝑥− 1

2
∣+ 2∣𝑦 − 1

2
∣+ 4∣𝑥𝑦 − 1

4
∣+ 1

]
max

{
∣𝑧𝑛,𝑚 − 𝑧∗𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁

}
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Since
[
2∣𝑥− 1

2 ∣+ 2∣𝑦 − 1
2 ∣+ 4∣𝑥𝑦 − 1

4 ∣+ 1
] ≤ 4, the required bounds for stability is obtained from the above inequality.

When the hidden variable is perturbed, both the self affine function 𝐹2 and CHFIS 𝐹1 gets perturbed. Proposition 6
describes the stability of self affine function 𝐹2 when the hidden variable is perturbed. Using this proposition, the stability
of CHFIS is described in Theorem (7) when the hidden variable is perturbed.

Proposition 6 Let 𝐹1 and 𝐺1, with the same choice of free variables and constrained variable, be CHFIS respectively
for the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} and △∗ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡∗𝑖,𝑗) : 𝑖, 𝑗 =
0, 1, . . . , 𝑁}. Then,

∥𝐹2 −𝐺2∥∞ ≤ 4(1 + 𝛾)

(1− 𝛾)
max{∣𝑡𝑛,𝑚 − 𝑡∗𝑛,𝑚∣ : 𝑛 = 0, 1, . . . , 𝑁 ;𝑚 = 0, 1, . . . , 𝑁} (14)

Proof. By Proposition 1, we may assume [𝑥0, 𝑥𝑁 ]× [𝑦0, 𝑦𝑁 ] = [0, 12 ]× [0, 12 ]. Hence,

∣𝐹2(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))−𝐺2(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))∣

≤ ∣𝛾∣ ∣𝐹2(𝑥, 𝑦)−𝐺2(𝑥, 𝑦)∣+
[
2∣𝑥− 1

2
∣+ 2∣𝑦 − 1

2
∣+ 4∣𝑥𝑦 − 1

4
∣+ 1

]
×

× (1 + 𝛾)
{
max{∣𝑡𝑛,𝑚 − 𝑡∗𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁}}

The above inequality is true for all 𝜙𝑛(𝑥) and 𝜓𝑚(𝑦); 𝑛,𝑚 = 1, 2, . . . , 𝑁 giving the required bounds for ∥𝐹2 −𝐺2∥∞.

Theorem 7 Let 𝐹1 and 𝐺1, with the same choice of free variables and constrained variable, be CHFIS respectively for
the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} and △∗ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡∗𝑖,𝑗) : 𝑖, 𝑗 =
0, 1, . . . , 𝑁}. Then,

∥𝐹1 −𝐺1∥∞ ≤ 8 𝛽

(1− 𝛼)(1− 𝛾)
max

{
∣𝑡𝑛,𝑚 − 𝑡∗𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁

}
(15)

Proof. We may assume [𝑥0, 𝑥𝑁 ]× [𝑦0, 𝑦𝑁 ] = [0, 12 ]× [0, 12 ] by Proposition 1. Thus,

∣𝐹1(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))−𝐺1(𝜙𝑛(𝑥), 𝜓𝑚(𝑦))∣
≤ ∣𝛼∣∣𝐹1(𝑥, 𝑦)−𝐺1(𝑥, 𝑦)∣+ ∣𝛽∣∣𝐹2(𝑥, 𝑦)−𝐺2(𝑥, 𝑦)∣

+ ∣𝛽∣
[
2∣𝑥− 1

2
∣+ 2∣𝑦 − 1

2
∣+ 4∣𝑥𝑦 − 1

4
∣+ 1

]
max{∣𝑡𝑛,𝑚 − 𝑡∗𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁}

Using equation(14) and since
[
2∣𝑥− 1

2 ∣+ 2∣𝑦 − 1
2 ∣+ 4∣𝑥𝑦 − 1

4 ∣+ 1
] ≤ 4, we get the desired bounds in (7).

Theorems (4)-(7) suggest the following definition of a metric on a generalized interpolation data needed to formulate our
main result on stability for CHFIS.

Definition 2 Let 𝑆(△) be the set of generalized interpolation data. The metric 𝑑(△1,△2) on the set 𝑆(△) ⊂ ℝ4 is
defined as:

𝑑(△1,△2) =
8 𝛽

(1− 𝛼) (1− 𝛾)
max{∣𝑡1𝑛,𝑚 − 𝑡2𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁}

+
4(1 + 𝛼)

(1− 𝛼)
max{∣𝑧1𝑛,𝑚 − 𝑧2𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, . . . , 𝑁}

+

[
2 𝛽 𝛾

(1− 𝛼)(1− 𝛾)
+

(1 + 𝛼)

(1− 𝛼)

]
𝑀̄×

×max{(∣𝑥1𝑛 − 𝑥2𝑛∣+ ∣𝑦1𝑚 − 𝑦2𝑚∣)𝛿 : 𝑛,𝑚 = 0, 1, . . . , 𝑁} (16)

where △𝑚 = {(𝑥𝑚𝑖 , 𝑦𝑚𝑗 , 𝑧𝑚𝑖,𝑗 , 𝑡𝑚𝑖,𝑗), : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} ∈ 𝑆(△), 𝑚 = 1, 2 and satisfy invariance of ratio condition (6).

Using Theorems (4)-(7), the main stability result for CHFIS is now obtained as follows:
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Theorem 8 Let 𝐹1 and 𝐺1, with the same choice of free variables and constrained variable, be CHFIS respectively for
the generalized interpolation data △ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} and △∗ = {(𝑥∗𝑖 , 𝑦∗𝑗 , 𝑧∗𝑖,𝑗 , 𝑡∗𝑖,𝑗) : 𝑖, 𝑗 =
0, 1, . . . , 𝑁} that satisfy the invariance of ratio condition (6). Then,

∥𝐹1 −𝐺1∥∞ ≤ 𝑑 (△,△∗) .

Proof. Let △∗
1 = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖,𝑗 , 𝑡∗𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} and △∗

2 = {(𝑥𝑖, 𝑦𝑗 , 𝑧∗𝑖,𝑗 , 𝑡∗𝑖,𝑗) : 𝑖, 𝑗 = 0, 1, . . . , 𝑁} be two gen-
eralized interpolation data having CHFIS 𝐹 ∗

1 and 𝐹 ∗∗
1 respectively with the same choice of free variables and constrained

variable as for 𝐹1 and 𝐺1. By considering the pairs (△,△∗
1) , (△∗

1,△∗
2) and (△∗

2,△∗) and applying Theorems (4)-(7)
for these sets of data with appropriate CHFIS, it follows that,

∥𝐹1 −𝐺1∥∞ ≤ ∥𝐹1 − 𝐹 ∗
1 ∥∞ + ∥𝐹 ∗

1 − 𝐹 ∗∗
1 ∥∞ + ∥𝐹 ∗∗

1 −𝐺1∥∞ ≤ 𝑑 (△,△∗) .

5 Error bounds for a Sample Surface

Consider the sample CHFIS (c.f. Fig. 1) generated by the data in rows 1− 3 of Table 1 with 𝛼𝑛,𝑚 = 0.7, 𝛽𝑛,𝑚 = 0.4 and
𝛾𝑛,𝑚 = 0.5. Perturbed values in independent variables 𝑥𝑛 and 𝑦𝑚 are chosen such that the invariance of ratio condition (6)
is satisfied. However, perturbed values of dependent variable 𝑧𝑛,𝑚 and hidden variable 𝑡𝑛,𝑚 are randomly generated.

Figs. 2(a) and 2(b) are simulations of CHFIS generated corresponding to perturbations in independent variables 𝑥𝑛
and 𝑦𝑚

(
c.f. Table 1 Case (i(a)) and Case (i(b))

)
. The bound on error ∥𝐹 − 𝐺∥∞ (c.f. Theorem 4) for these simulated

surfaces are found to be 0.0217 and 2.1667 when max
{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣) : 𝑛,𝑚 = 0, 1, 2

}
is 0.002 and 0.2

respectively (c.f. Table 2) .

Figs. 3(a) and 3(b) give simulations of CHFIS obtained by perturbing the values of dependent variable 𝑧𝑛,𝑚
(
c.f.

Table 1 Case (ii(a)) and Case (ii(b))
)
. The bound on error ∥𝐹 − 𝐺∥∞ (c.f. Theorem 5) for these simulations are 0.0227

and 2.2667 when max{∣𝑧1𝑛,𝑚 − 𝑧2𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, 2} is 0.001 and 0.1 respectively (c.f. Table 2).

Figs. 4(a) and 4(b) demonstrate the effect of perturbations in hidden variable 𝑡𝑛,𝑚
(
c.f. Table 1 Case (iii(a)) and

Case (iii(b))
)
. The bound on error ∥𝐹 − 𝐺∥∞ (c.f. Theorem 7) for these simulated surfaces equals 0.0213 and 2.1333

when max{∣𝑡1𝑛,𝑚 − 𝑡2𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, 2} is 0.001 and 0.1 respectively (c.f. Table 2).

Finally, Fig. 5(a) and 5(b) give the perturbed images that is simulated by simultaneously using perturbed independent
variable, perturbed dependent variable 𝑧∗𝑛,𝑚 and perturbed hidden variable

(
c.f. Table 1 Case (i(a)), (ii(a)), (iii(a)) and

Case (i(b)), (ii(b)), (iii(b)) respectively
)
. The computed bound on error ∥𝐹−𝐺∥∞ (c.f. Theorem 8) for these perturbations

in all the variables is found to be 0.0657 and 6.5667 when max
{
(∣𝑥𝑛 − 𝑥∗𝑛∣+ ∣𝑦𝑚 − 𝑦∗𝑚∣) : 𝑛,𝑚 = 0, 1, 2

}
is 0.002 and

0.2, max{∣𝑧1𝑛,𝑚 − 𝑧2𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, 2} is 0.001 and 0.1 and max{∣𝑡1𝑛,𝑚 − 𝑡2𝑛,𝑚∣ : 𝑛,𝑚 = 0, 1, 2} is 0.001 and 0.1
respectively.

Table 1: Data points and their perturbations for a sample surface
Data

Points

(𝑥𝑛, 𝑦𝑚) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
𝑧𝑛,𝑚 0.3 0.5 0.6 0.7 0.4 0.6 0.8 0.5 0.6
𝑡𝑛,𝑚 0.3 0.4 0.5 0.7 0.8 0.5 0.6 0.8 0.9

Case(i) (a): (𝑥∗
𝑛, 𝑦

∗
𝑚) (0.001,0.001) (0.001,1) (0.01,1.999) (1,0.001) (1,1) (1,1.999) (1.999,0.001) (1.999,1) (1.999,1.999)

(b): (𝑥∗
𝑛, 𝑦

∗
𝑚) (0.1,0.1) (0.1,1) (0.1,1.9) (1,0.1) (1,1) (1,1.9) (1.9,0.1) (1.9,1) (1.9,1.9)

Case(ii)
(a): 𝑧∗

𝑛,𝑚 0.301 0.501 0.601 0.699 0.401 0.599 0.801 0.501 0.601
(b): 𝑧∗

𝑛,𝑚 0.4 0.4 0.7 0.6 0.3 0.7 0.9 0.4 0.5

Case(iii)
(a): 𝑡∗𝑛,𝑚 0.299 0.401 0.499 0.701 0.801 0.501 0.601 0.801 0.9
(b): 𝑡∗𝑛,𝑚 0.4 0.5 0.4 0.6 0.9 0.4 0.5 0.9 0.8
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Table 2: Error due to perturbation

Perturbation Maximum Manhattan Metric Error

Case(i)
(a): Perturbed (𝑥∗

𝑛, 𝑦
∗
𝑚) 0.002 0.0217

(b): Perturbed (𝑥∗
𝑛, 𝑦

∗
𝑚) 0.2 2.1667

Case(ii)
(a): Perturbed 𝑧∗𝑛,𝑚 0.001 0.0227
(b): Perturbed 𝑧∗𝑛,𝑚 0.1 2.2667

Case(iii)
(a): Perturbed 𝑡∗𝑛,𝑚 0.001 0.0213
(b): Perturbed 𝑡∗𝑛,𝑚 0.1 2.1333

(a) Simulated Surface due to perturbation in independent vari-
ables (c.f. Case (i(a)))

(b) Simulated Surface due to perturbation in independent
variables (c.f. Case (i(b)))

Figure 2: Simulated Surfaces due to perturbation in independent variables (c.f. Case (i))

6 Conclusion

The present paper explores the stability of CHFIS when there is a perturbation in independent variables, the dependent
variable and the hidden variable. The stability during the perturbations in all the variables simultaneously is observed to
be the combined individual effect of perturbations in each variable on the stability of CHFIS. The bound on error in the
approximation of the data generating function by CHFIS is

Figure 1: Original Surface
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(a) Simulated Surface due to perturbation in dependent vari-
able (c.f. Case (ii(a)))

(b) Simulated Surface due to perturbation in dependent vari-
able (c.f. Case (ii(b)))

Figure 3: Simulated Surfaces due to perturbation in dependent variable (c.f. Case (ii))

(a) Simulated Surface due to perturbation in hidden variable
(c.f. Case (iii(a)))

(b) Simulated Surface due to perturbation in hidden variable
(c.f. Case (iii(b)))

Figure 4: Simulated Surfaces due to perturbation in hidden variable (c.f. Case (iii))
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(a) Simulated Surface due to perturbation in all the variables
(c.f. Case (i(a)), (ii(a)), (iii(a)))

(b) Simulated Surface due to perturbation in all the variables
(c.f. Case (i(b)), (ii(b)), (iii(b)))

Figure 5: Simulated Surfaces due to perturbation in all the variables
described individually for each case of perturbation in independent, dependent and hidden variables. These bounds to-
gether are employed to find the total error bound on CHFIS when there is perturbation in all the variables simultaneously.
The stability results found here are illustrated through a sample surface. Our results are likely to find applications in
investigations concerning texture of surfaces of naturally occurring objects like surfaces of rocks [10], sea surfaces [9],
clouds [11] etc.
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