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GENERALIZED CUBIC SPLINE FRACTAL INTERPOLATION
FUNCTIONS∗
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Abstract. We construct a generalized Cr-Fractal Interpolation Function (Cr-FIF) f by pre-
scribing any combination of r values of the derivatives f (k), k = 1, 2, . . . , r, at boundary points of
the interval I = [x0, xN ]. Our approach to construction settles several questions of Barnsley and
Harrington [J. Approx Theory, 57 (1989), pp. 14–34] when construction is not restricted to pre-
scribing the values of f (k) at only the initial endpoint of the interval I. In general, even in the case
when r equations involving f (k)(x0) and f (k)(xN ), k = 1, 2, . . . , r, are prescribed, our method of
construction of the Cr-FIF works equally well. In view of wide ranging applications of the classical
cubic splines in several mathematical and engineering problems, the explicit construction of cubic
spline FIF fΔ(x) through moments is developed. It is shown that the sequence {fΔk

(x)} converges
to the defining data function Φ(x) on two classes of sequences of meshes at least as rapidly as the
square of the mesh norm ‖Δk‖ approaches to zero, provided that Φ(r)(x) is continuous on I for
r = 2, 3, or 4.
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1. Introduction. With the advent of fractal geometry [2], the use of stochastic
or deterministic fractal models [3, 4, 5] has significantly enhanced the understanding
of complexities in nature and different scientific experiments. Hutchinson [6] has stud-
ied the deterministic fractal model based on the theory of Iterated Function System
(IFS). Using IFS, Barnsley [3, 7] has introduced the concept of Fractal Interpola-
tion Function (FIF) for approximation of naturally occurring functions showing some
sort of self-similarity under magnification. A FIF is the fixed point of the Read–
Bajraktarević operator acting on different function spaces. Generally, affine FIFs are
nondifferentiable functions and the fractal dimensions of their graphs are nonintegers.
The generation of FIF codes provides a powerful technique for compression of images,
speeches, time series, and other data; see, e.g., [8, 9, 10].

If the experimental data are approximated by a Cr-FIF f , then one can use the
fractal dimension of f (r) as a quantitative parameter for the analysis of experimen-
tal data. The differentiable Cr-FIF differs from the classical spline interpolation by
a functional relation that gives self-similarity on small scales. Barnsley and Har-
rington [1] have introduced an algebraic method for the construction of a restricted
class of Cr-FIF f , which interpolates the prescribed data by providing values of f (k),
k = 1, 2, . . . , r, at the initial endpoint of the interval. However, in their method of
construction, specifying boundary conditions similar to those for classical splines has
been found to be quite difficult to handle. Massopust [11] has attempted to generalize
work in [1] by constructing smooth fractal surfaces via integration.
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In the present paper, a method of construction of a Cr-fractal function is devel-
oped by removing the requirement of prescribing the values of integrals of the given
FIF only at the initial endpoint x0. Thus, a Cr-fractal function is constructed when
successive r values of integrals of a FIF are prescribed in any combination at boundary
points of the interval. Further, a general method is proposed to construct an inter-
polating Cr-FIF for the prescribed data with all possible boundary conditions. The
complex algebraic method proposed in [1] uses complicated matrices and particular
types of end conditions. Using the functional relations present between the values of
the Cr-FIF that involve endpoints of the interval, our approach does not need the
complex algebraic method in [1]. Our construction settles several queries of Barnsley
and Harrington [1] such as (i) which boundary point conditions lead to uniqueness
of a Cr-FIF, (ii) what happens if horizontal scalings are in reverse direction and (iii)
how to build up the moment integrals theory in this case. The advantage of such a
spline FIF construction is that, for prescribed data and given boundary conditions,
one can have an infinite number of spline FIFs depending on the vertical scaling fac-
tors, giving thereby a large flexibility in the choice of differentiable Cr-FIFs according
to the need of an experiment.

Due to the importance of the cubic splines in computer graphics, CAGD, FEM,
differential equations, and several engineering applications [12, 13, 14, 15], cubic spline
FIF fΔ(x) on a mesh Δ is constructed through moments Mn = f

′′

Δ(xn), n = 0, 1, 2, . . . ,
N . These cubic spline FIFs may have any types of boundary conditions as in classical
splines. It is shown that the sequence {fΔk

(x)} converges to the defining data function
Φ(x) on two classes of sequences of meshes at least as rapidly as the square of the
mesh norm ‖Δk‖ converging to zero, provided that Φ(r)(x) is continuous on [x0, xN ]
for r = 2, 3, or 4.

In section 2, some basic results for FIFs are given and a general method for
construction of a Cr-FIF with different boundary conditions is enunciated after de-
veloping a basic calculus of C1-FIFs. The construction of a generalized cubic spline
FIF through moments is described in section 3 with all possible boundary conditions,
as in the classical splines. In section 4, two classes of sequences of meshes are defined
and the convergence of suitable sequence of cubic spline FIFs {fΔk

} to Φ ∈ Cr[x0, xN ],
r = 2, 3, or 4, is established. Finally, in section 5, the results obtained in section 3
are illustrated by generating certain examples of cubic spline FIFs for a given data
and two different sets of vertical scaling factors.

2. A general method for construction of Cr-FIF. We give the basics of
the general theory of FIFs and develop the calculus of C1-FIFs in section 2.1. The
principle of construction of a Cr-FIF that interpolates the given data is described in
section 2.2.

2.1. Preliminaries and calculus of C1-FIFs. Barnsley et al. [1, 3, 8, 16, 17]
have developed the theory of FIF and its extensive applications. In the following, some
of the notations and results of FIF theory, which we will later need, are described.

Let K be a complete metric space with metric d and H be the set of nonempty
compact subsets of K. Then, {K;ωn, n = 1, 2, . . . , N} is an iterated function system
(IFS) if ωn : K → K is continuous for n = 1, 2, . . . , N. An IFS is called hyperbolic
if d(ωn(x), ωn(y)) ≤ sd(x, y) for all x, y ∈ K,n = 1, 2, . . . , N and 0 ≤ s < 1. Set

W (A) =
⋃N

n=1 ωn(A) for A ∈ H. The following proposition gives a condition on an
IFS to have a unique attractor.

Proposition 2.1 (see [3]). Let {K;ωn, n = 1, 2, . . . , N} be a hyperbolic IFS.
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Then, it has an unique attractor G such that h(Wm(A), G) → 0 as m → ∞, where
h(. , .) is the Hausdorff metric.

Suppose a set of data points {(xi, yi) ∈ I × R : i = 0, 1, 2, . . . , N} is given, where
x0 < x1 < · · · < xN and I = [x0, xN ]. Set K = I ×D, where D is a suitable compact
set in R. Let Ln : I −→ In = [xn−1, xn] be the affine map satisfying

Ln(x0) = xn−1, Ln(xN ) = xn(2.1)

and Fn : K −→ D be a continuous function such that

Fn(x0, y0) = yn−1, Fn(xN , yN ) = yn

|Fn(x, y) − Fn(x, y∗)| ≤ αn|y − y∗|

}
,(2.2)

where, (x, y), (x, y∗) ∈ K, and 0 ≤ αn < 1 for all n = 1, 2, . . . , N. Define ωn(x, y) =
(Ln(x), Fn(x, y)) for all n = 1, 2, . . . , N. The definition of a FIF originates from the
following proposition.

Proposition 2.2 (see [3]). The IFS {K;ωn, n = 1, 2, . . . , N} has a unique
attractor G such that G is the graph of a continuous function f : I → R (called
FIF associated with IFS {K;ωn, n = 1, 2, . . . , N}) satisfying f(xn) = yn for n =
0, 1, 2, . . . , N.

The following observations based on Proposition 2.2 are needed in the sequel.
Let F = {f : I → R | f is continuous, f(x0) = y0 and f(xN ) = yN} and ρ be the
sup-norm on F . Then, (F , ρ) is a complete metric space. The FIF f is the unique
fixed point of the Read–Bajraktarević operator T on (F , ρ) so that

Tf(x) ≡ Fn(L−1
n (x), f(L−1

n (x))) = f(x), x ∈ In, n = 1, 2, . . . , N.(2.3)

For an affine FIF, Ln and Fn are given by

Ln(x) = anx + bn

Fn(x, y) = αny + qn(x)

}
, n = 1, 2, . . . , N,(2.4)

where qn(x) is an affine map and |αn| < 1.
Barnsley and Harrington [1] have observed that the integral of a FIF is also

a FIF, although for a different set of interpolation data, provided the value of the
integral of the FIF at the initial endpoint of the interval is known. This observation
is needed for developing the calculus of C1-FIFs. Thus, let f be the FIF associated
with {(Ln(x), Fn(x, y)), n = 1, 2, . . . , N}, where Fn is defined by (2.4) and let the
value of integral of this FIF be known at x0. If

f̂(x) = ŷ0 +

∫ x

x0

f(τ)dτ,(2.5)

the function f̂ is the FIF associated with IFS {(Ln(x), F̂n(x, y)), n = 1, 2, . . . , N},
where F̂n(x, y) = anαny + q̂n(x), q̂n(x) = ŷn−1 − anαnŷ0 + an

∫ x

x0
qn(τ)dτ ,

ŷn = ŷ0 +

n∑
i=1

ai

{
αi(ŷN − ŷ0) +

∫ xN

x0

qi(τ)dτ

}
, n = 1, 2, . . . , N − 1,

and ŷN = ŷ0 +
∑N

i=1 ai
∫ xN

x0
qi(τ)dτ/1−

∑
i=1 Naiαi. Here, (xn, ŷn), n = 0, 1, 2, . . . , N

are interpolation points of FIF f̂ .
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Fig. 1. FIF and its integrals.

Remarks. 1. If the value of the integral of a FIF is known at the final endpoint
xN instead of the initial endpoint x0, an analogue of the above result can be found
by defining

f̂(x) = ŷN −
∫ xN

x

f(τ)dτ.(2.6)

The function f̂ is the FIF associated with {(Ln(x), F̂n(x, y)), n = 1, 2, . . . , N}, where
F̂n(x, y) = anαny+q̂n(x), q̂n(x) = ŷn−anαnŷN−an

∫ xN

x
qn(τ)dτ and the interpolation

points of f̂ are given by ŷn = ŷN −
∑N

i=n+1 ai{αi(ŷN − ŷ0) +
∫ xN

x0
qi(τ)dτ}, n =

1, 2, . . . , N − 1 with ŷ0 = ŷN −
∑N

i=1ai

∫ xN
x0

qi(τ)dτ

1−
∑N

i=1aiαi
. In general, a Cr-FIF interpolating a

certain different set of data can be constructed when values of r successive integrals
of the FIF are provided at any combination of endpoints.

2. The functional values of FIF f̂ are, in general, different for the same set of
vertical scaling factors even if ŷ0 and ŷN occurring, respectively, in (2.5) and (2.6) are
the same. However, since ŷn− ŷn−1 remains the same for each n in both the cases, the
nature of f̂ remains the same in both the cases as illustrated by the following example.

Example. Let f be a FIF associated with the data {(0, 0), ( 2
5 , 1), ( 3

4 ,−1), (1, 2)}
with vertical scaling factor αn = 0.8 for n = 1, 2, 3 (Figure 1(a)). Choosing ŷ0 = 0,

f̂(x) =
∫ x

x0
f interpolates the set of points {(0, 0), ( 2

5 ,
−22
25 ), ( 3

4 ,
−73
40 ), (1, −19

8 )}. FIF f̂

is associated with the IFS generated by L1(x) = 2
5x, L2(x) = 7

20x+ 2
5 , L3(x) = 1

4x+ 3
4

and F̂1(x, y) = 8
25y−

3
25x

2, F̂2(x, y) = 7
25y−

63
100x

2 + 7
20x−

22
25 , F̂3(x, y) = 1

5y+ 7
40x

2−
1
4x + 73

40 . The graph of FIF f̂ is shown in Figure 1(b). Next, choosing ŷN = 0,

f̂(x) = −
∫ xN

x
f interpolates the set of points {(0, 19

8 ), ( 2
5 ,

299
200 ), ( 3

4 ,
11
20 ), (1, 0)} (Figure

1(c)). In this case, the corresponding IFS contains the same Ln(x) for n = 1, 2, 3
and F̂1(x, y) = 8

25y − 3
25x

2 + 323
100 , F̂2(x, y) = 7

25y − 63
100x

2 + 7
20x + 83

100 , F̂3(x, y) =
1
5y+ 7

40x
2− 1

4x+ 3
40 . The nature of FIFs f̂ in Figure 1(b)–(c) remains the same, since

the functional values of FIF f̂ in Figure 1(c) are shifted by 19
8 from the functional

values of f̂ in Figure 1(b) so that ŷn− ŷn−1 remains the same. It is interesting to note
that the corresponding functions F̂n(x, y) for IFS of Figure 1(b)–(c) are not shifted

by equal amount although the function f̂ is shifted by the fixed amount 19
8 .

In general, the relation between the IFS of FIF f and the IFS of its integral f̂ is
given as follows [18].

Proposition 2.3. Let f̂ be the FIF defined by (2.5) or (2.6) for a FIF f with

Ln(x) and Fn(x, y) given by (2.4). Then, f is primitive of f̂ if and only if f̂ is the
FIF associated with the IFS {R2; ŵn(x, y) = (Ln(x), F̂n(x, y)), n = 1, 2, . . . , N}, where
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F̂n(x, y) = α̂ny+ q̂n(x), α̂n = anαn, and the polynomial q̂n(x) satisfies q̂′n = anqn for
n = 1, 2, . . . , N.

2.2. Principle of construction of a Cr-FIF. Our approach for the construc-
tion of a Cr-FIF that interpolates the given data is based on finding the solution of
a system of equations in which any type of boundary conditions are admissible. Such
a construction is more general than that of Barnsley and Harrington [1] wherein all
the relevant derivatives of the FIF are restricted to be known at the initial endpoint
only. The Cr-FIF interpolating prescribed set of data is found as the fixed point of a
suitably chosen IFS by using the following procedure.

Let {(x0, y0), (x1, y1), . . . , (xN , yN )}, x0 < x1 < · · · < xN , be the given data
points and Fr = {g ∈ Cr(I,R) | g(x0) = y0 and g(xN ) = yN}, where r is some
nonnegative integer and σ is the Cr-norm on Fr. Define the Read–Bajraktarević
operator T on (Fr, σ) as

Tg(x) = αng(L
−1
n (x)) + qn(L−1

n (x)), x ∈ In, n = 1, 2, . . . , N,

where Ln(x) = anx + bn satisfies (2.1), qn(x) is a suitably chosen polynomial, and
|αn| < arn for n = 1, 2, . . . , N. The condition |αn| < arn < 1 gives that T is a contractive
operator on (Fr, σ). The fixed point f of T is a FIF that satisfies the functional
relation, f(Ln(x)) = αnf(x) + qn(x) for n = 1, 2, . . . , N. Using Proposition 2.3, it
follows that f ′ satisfies the functional relation

f ′(Ln(x)) =
αnf

′(x) + q′n(x)

an
, n = 1, 2, . . . , N.

Since |αn|
an

≤ |αn|
ar
n

< 1, f ′ is a fractal function. Inductively, using the above arguments,

the following relations are obtained:

f (k)(Ln(x)) =
αnf

(k)(x) + q
(k)
n (x)

akn
, n = 1, 2, . . . , N, k = 0, 1, 2, . . . , r,(2.7)

where f (0) = f and q(0) = q. Since |αn|
ak
n

≤ |αn|
ar
n

< 1, the derivatives f (k), k = 2,

3, . . . , r are fractal functions. In general f (k), k = 1, 2, 3, . . . , r, interpolates a data
different than the given data. In particular, f (r) is an affine FIF if the polynomial

q
(r)
n occurring in (2.7) with k = r is affine. Thus, qn(x) is chosen as a polynomial of

degree (r + 1). Let qn(x) =
∑r+1

k=0 qknx
k, n = 1, 2, . . . , N, where the coefficients qkn

are chosen suitably such that f interpolates the prescribed data. The continuity of
f (k) on I implies

f (k)(Ln+1(x0)) = f (k)(Ln(xN )), k = 0, 1, . . . , r, n = 1, 2, . . . , N − 1.

Therefore, (2.7) results in the following (r + 1)(N − 1) join-up conditions for
k = 0, 1, . . . , r, n = 1, 2, . . . , N − 1:

αn+1f
(k)(x0) + q

(k)
n+1(x0)

akn+1

=
αnf

(k)(xN ) + q
(k)
n (xN )

akn
.(2.8)

In addition, at the endpoints of the interval, (2.7) implies that the values of f (k)

satisfy the following 2r-conditions:

f (k)(x0) =
α1f

(k)(x0) + q
(k)
1 (x0)

ak1
, k = 1, 2, . . . , r,(2.9)
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and

f (k)(xN ) =
αNf (k)(xN ) + q

(k)
N (xN )

akN
, k = 1, 2, . . . , r.(2.10)

Let the prescribed interpolation conditions be

f(xn) = yn, n = 0, 1, . . . , N.(2.11)

In view of (2.8)–(2.11), the total number of conditions for f to interpolate the given
data are (r + 1)(N − 1) + 2r + (N + 1) = (r + 2)N + r. In (2.8)–(2.10), f (k)(x0)
and f (k)(xN ) for k = 1, 2, . . . , r are 2r unknowns and qkn, k = 0, 1, . . . , r + 1, n =
1, 2, . . . , N , in the polynomials qn(x) are additional (r+2)N unknowns. Consequently,
in total (r+2)N+2r number of unknowns are to be determined. The principle of con-
struction of a Cr-FIF is to determine these unknowns by choosing additional suitable
r conditions in the form of restrictions on the values of the Cr-FIF or the values of
its derivatives at the boundary points of [x0, xN ] such that (2.8)–(2.11) together with
these additional conditions are linearly independent. The above unknowns are deter-
mined uniquely as the solution of these linear independent system of equations. Thus,
the desired Cr-FIF f interpolating the given data is constructed as the attractor of
the following IFS:

{R
2;ωn(x, y) = (Ln(x), Fn(x, y) = αny + qn(x)), n = 1, 2, . . . , N},

where |αn| < arn and qn(x), n = 1, 2, . . . , N , are the polynomials with coefficients
qkn computed by solving the linear independent system of equations, given by the
above procedure. The flexibility of these choices of boundary conditions allows for
the construction of a wide range of spline FIFs. Even for a given choice of boundary
conditions, depending upon the nature of the problem or simply at the discretion of
the user, an infinite number of suitable spline FIFs may be constructed due to the
freedom of choices for vertical scaling factors in our construction.

Remarks. 1. Barnsley and Harrington’s construction [1] of a Cr-FIF f is done
by restricting the choice of boundary values f (k)(x) for k = 1, 2, . . . , r, at the initial
endpoint. In our above construction of Cr-FIFs, all kinds of boundary conditions are
admissible.

2. It seems that Barnsley and Harrington’s question—“whether there exists a
FIF as a fixed point of an IFS wherein horizontal scalings are allowed in the reverse
direction”—is raised [1], since the construction of a Cr-FIF is based upon restricting
boundary values of f (k) at only initial end point of I. Such a question does not arise
in our construction since the boundary values of f (k) for Cr-FIF f are admissible at
any combination of boundary points of I.

Since the classical cubic splines play a significant role in CAGD, surface analysis,
differential equation, FEM, and other applications (see, e.g., [13, 14, 15]), in the sequel
a detailed construction for such cubic spline FIFs based on the above approach is given
in the following section.

3. Construction of cubic spline FIFs through moments. In the present
section, cubic spline FIFs fΔ are constructed through the moments Mn = f

′′

Δ(xn) for
n = 0, 1, 2, . . . , N .

Definition 3.1. A function fΔ(x) ≡ fΔ(Y ;x) is called a cubic spline FIF
interpolating a set of ordinates Y : y0, y1, y2, . . . , yN with respect to the mesh Δ :
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x0 < x1 < x2 < · · · < xN if (i) fΔ ∈ C2[x0, xN ], (ii) fΔ satisfies the interpo-
lation conditions fΔ(xn) = yn, n = 0, 1, . . . , N and (iii) the graph of fΔ is fixed
point of a IFS, {R2;ωn(x, y), n = 1, 2, . . . , N}, where for n = 1, 2, . . . , N, ωn(x, y) =
(Ln(x), Fn(x, y)), Ln(x) is defined by (2.4), Fn(x, y) = a2

nαny+a2
nqn(x), 0 < |αn| <

1, and qn(x) is a suitable cubic polynomial.

Using the moments Mn, n = 0, 1, 2, . . . , N , a rectangular system of equations is
formed for determining the polynomial qn(x) by employing the following procedure.

Using property (iii) and (2.3), it follows that f
′′

Δ satisfies the functional equation

f
′′

Δ(Ln(x)) = αnf
′′

Δ(x) +
cn(x− x0)

xN − x0
+ dn, n = 1, 2, . . . , N.(3.1)

By (2.1) and (3.1), cn = Mn−Mn−1 −αn(MN −M0) and dn = Mn−1 −αnM0. Thus,
for n = 1, 2, . . . , N , (3.1) can be rewritten as

f
′′

Δ(Ln(x)) = αnfΔ
′′(x) +

(Mn − αnMN )(x− x0)

xN − x0
+

(Mn−1 − αnM0)(xN − x)

xN − x0
.

(3.2)

The function f
′′

Δ being continuous on I could be twice integrated to obtain

fΔ(Ln(x)) =a2
n

{
αnfΔ(x) +

(Mn − αnMN )(x− x0)
3

6(xN − x0)
+

(Mn−1 − αnM0)(xN − x)3

6(xN − x0)

+ c∗n(xN − x) + d∗n(x− x0)

}
, n = 1, 2, . . . , N.

(3.3)

Now using interpolation conditions and (2.1), the constants c∗n and d∗n are determined
as

c∗n =
1

xN − x0

(
yn−1

a2
n

− αny0

)
− (Mn−1 − αnM0)(xN − x0)

6
,

d∗n =
1

xN − x0

(
yn
a2
n

− αnyN

)
− (Mn − αnMN )(xN − x0)

6
.

Thus, the functional equation (3.3) for the cubic spline FIF in terms of moments can
be written as

fΔ(Ln(x)) = a2
n

{
αnfΔ(x) +

(Mn − αnMN )(x− x0)
3

6(xN − x0)
+

(Mn−1 − αnM0)(xN − x)3

6(xN − x0)

− (Mn−1 − αnM0)(xN − x0)(xN − x)

6
− (Mn − αnMN )(xN − x0)(x− x0)

6

+

(
yn−1

a2
n

− αny0

)
xN − x

xN − x0
+

(
yn
a2
n

− αnyN

)
x− x0

xN − x0

}
, n = 1, 2, . . . , N.

(3.4)

It follows by (3.4) that fΔ(x) is continuous on [x0, xN ] and satisfies the interpolating
conditions fΔ(xn) = yn, n = 0, 1, 2, . . . , N. Further, (3.4) gives that, on [xi−1, xi],
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i = 1, 2, . . . , N,

f ′
Δ(Li(x)) = ai

{
αif

′
Δ(x) +

(Mi − αiMN )(x− x0)
2

2(xN − x0)
− (Mi−1 − αiM0)(xN − x)2

2(xN − x0)

− [Mi −Mi−1 − αi(MN −M0)](xN − x0)

6
+

[
yi − yi−1

a2
i

− αi(yN − y0)

]
1

xN − x0

}
.

(3.5)

Denote xn − xn−1 by hn = for n = 1, 2, . . . , N. Since, by property (i), f ′
Δ(x) is

continuous at x1, x2, . . . , xN−1, limx→x−
n
f ′
Δ(x) = limx→x+

n
f ′
Δ(x), n = 1, 2, . . . , N −1.

Thus, using (3.5) for i = n and i = n + 1, we have

(3.6)
−an+1αn+1f

′
Δ(x0) −

αnhn + 2αn+1hn+1

6
M0 +

hn

6
Mn−1 +

hn + hn+1

3
Mn

+
hn+1

6
Mn+1 −

2αnhn + αn+1hn+1

6
MN + anαnf

′
Δ(xN )

=
yn+1 − yn

hn+1
− yn − yn−1

hn
− (an+1αn+1 − anαn)

yN − y0

xN − x0
, n = 1, 2, . . . , N − 1.

Introducing the notations,

A∗
n =

−6an+1αn+1

hn + hn+1
, An =

−(αnhn + 2αn+1hn+1)

hn + hn+1
, λn =

hn+1

hn + hn+1
,

μn = 1 − λn, Bn =
−(2αnhn + αn+1hn+1)

hn + hn+1
, B∗

n =
6anαn

hn + hn+1
,

for n = 1, 2, . . . , N − 1, the continuity relation (3.6) reduces to

A∗
nf

′
Δ(x0) + AnM0 + μnMn−1 + 2Mn + λnMn+1 + BnMN + B∗

nf
′
Δ(xN )

=
6[(yn+1 − yn)/hn+1 − (yn − yn−1)/hn]

hn + hn+1
− 6(an+1αn+1 − anαn)

hn + hn+1

yN − y0

xN − x0
.(3.7)

Next, (3.5) with x = x0 and i = 1 gives the following functional relation for f ′
Δ(x0):

6(1−a1α1)f
′
Δ(x0) + 2(1 − α1)h1M0 + h1M1 − α1h1MN

= 6/h1[y1 − y0 − α1a
2
1(yN − y0)].

(3.8)

Similarly, (3.5) with x = xN and i = N gives

− αNhNM0 + hNMN−1 + 2(1 − αN )hNMN − 6(1 − aNαN )f ′
Δ(xN )

= −6/hN [yN − yN−1 − αNa2
N (yN − y0)].

(3.9)

To write the system of equations given by (3.7)–(3.9) in matrix from, we introduce
the following notations:

A∗
0 =6(1 − a1α1), A0 = 2(1 − α1)h1, λ0 = h1, B0 = −α1h1,

AN =−αNhN , μN = hN , BN = 2(1 − αN )hN , B∗
N = −6(1 − aNαN ),

d0 =6/h1[y1 − y0 − α1a
2
1(yN − y0)], dN = −6/hN [yN − yN−1 − αNa2

N (yN − y0)].
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Thus, the matrix form of defining (3.7)–(3.9) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 A0 λ0 0 0 ... 0 0 0 B0 0

A∗
1 A1+μ1 2 λ1 0 ... 0 0 0 B1 B∗

1

A∗
2 A2 μ2 2 λ2 ... 0 0 0 B2 B∗

2

A∗
3 A3 0 μ3 2 ... 0 0 0 B3 B∗

3

...
...

...
...

...
...

...
...

...
...

A∗
N−3 AN−3 0 0 0 ... 2 λN−3 0 BN−3 B∗

N−3

A∗
N−2 AN−2 0 0 0 ... μN−2 2 λN−2 BN−2 B∗

N−2

A∗
N−1 AN−1 0 0 0 ... 0 μN−1 2 λN−1+BN−1 B∗

N−1

0 AN 0 0 0 ... 0 0 μN BN B∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′
Δ(x0)
M0

M1

M2

...
MN−2

MN−1

MN

f ′
Δ(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

...
dN−3

dN−2

dN−1

dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.10)

where dn, n = 1, 2, . . . , N − 1, is given by the right side expression of (3.7) and
f ′
Δ(x0),M0, M1, . . . ,MN , f ′

Δ(xN ) are unknowns. Equation (3.10), consisting of a
coefficient matrix of order (N+1)×(N+3), is the desired rectangular matrix equation
for computing the unknowns coefficients qkn of the polynomial qn(x).

Boundary Conditions. By prescribing suitable boundary conditions as in the
case of classical cubic splines, the rectangular matrix system of equations (3.10)
reduces to a square matrix system of equations. Let the data {(xn, yn) : n =
0, 1, 2, . . . , N} be generated by a continuous function Φ that is to be approximated
by cubic spline FIF fΔ. The following kinds of boundary conditions are admissible.

Boundary conditions of Type-I: In this case, the values of the first derivative are
prescribed at the endpoints of the interval [x0, xN ], i.e., f ′

Δ(x0) = Φ′(x0), f ′
Δ(xN ) =

Φ′(xN ). So, (3.10) reduces to the following system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A0 λ0 0 0 ... 0 0 0 B0

A1+μ1 2 λ1 0 ... 0 0 0 B1

A2 μ2 2 λ2 ... 0 0 0 B2

A3 0 μ3 2 ... 0 0 0 B3

...
...

...
...

...
...

...
...

AN−3 0 0 0 ... 2 λN−3 0 BN−3

AN−2 0 0 0 ... μN−2 2 λN−2 BN−2

AN−1 0 0 0 ... 0 μN−1 2 λN−1+BN−1

AN 0 0 0 ... 0 0 μN BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1

M2

M3

...
MN−3

MN−2

MN−1

MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1
0

d1
1

d1
2

...
d1
N−2

d1
N−1

d1
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(3.11)

where d1
0 = d0 −A∗

0f
′
Δ(x0), d

1
n = dn −A∗

nf
′
Δ(x0)−B∗

nf
′
Δ(xN ) for n = 1, 2, . . . , N − 1,

and d1
N = dN − B∗

Nf ′
Δ(xN ). Thus, boundary conditions of Type-I result in determi-

nation of the complete cubic spline FIF by using (3.11).
Boundary conditions of Type-II: In this case, the values of the second derivative

given at the endpoints of the segment [x0, xN ] are prescribed as f
′′

Δ(x0) = Φ
′′
(x0) =

M0, f
′′

Δ(xN ) = Φ
′′
(xN ) = MN . With these boundary conditions, (3.10) reduces to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 λ0 0 0 ... 0 0 0 0

A∗
1 2 λ1 0 ... 0 0 0 B∗

1

A∗
2 μ2 2 λ2 ... 0 0 0 B∗

2

A∗
3 0 μ3 2 ... 0 0 0 B∗

3

...
...

...
...

...
...

...
...

A∗
N−3 0 0 0 ... 2 λN−3 0 B∗

N−3

A∗
N−2 0 0 0 ... μN−2 2 λN−2 B∗

N−2

A∗
N−1 0 0 0 ... 0 μN−1 2 B∗

N−1

0 0 0 0 ... 0 0 μN B∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′
Δ(x0)
M1

M2

M3

...
MN−3

MN−2

MN−1

f ′
Δ(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d2
0

d2
1

d2
2

...
d2
N−2

d2
N−1

d2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(3.12)

where d2
1 = d1−(A1+μ1)M0−B1μN , d2

N−1 = dN−1−AN−1M0−(BN−1+λN−1)MN ,
and d2

n = dn−AnM0−BnMN for n = 0, 2, 3, . . . , N−2, N . Taking free end conditions
M0 = 0 and MN = 0, the natural cubic spline FIF is computed by using (3.12).
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Boundary conditions of Type-III: In this case, the boundary conditions involve
the functional values, the values of first and second derivatives of the cubic splines
at both endpoints, i.e., fΔ(x0) = fΔ(xN ), f ′

Δ(x0) = f ′
Δ(xN ), f

′′

Δ(x0) = f
′′

Δ(xN ).
With these boundary conditions, (3.10) takes the following form:

(3.13)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 λ0 0 0 ... 0 0 0 A0+B0

A∗
1+B∗

1 2 λ1 0 ... 0 0 0 A1+B1+μ1

A∗
2+B∗

2 μ2 2 λ2 ... 0 0 0 A2+B2

A∗
3+B∗

3 0 μ3 2 ... 0 0 0 A3+B3

...
...

...
...

...
...

...
...

A∗
N−3+B∗

N−3 0 0 0 ... 2 λN−3 0 AN−3+BN−3

A∗
N−2+B∗

N−2 0 0 0 ... μN−2 2 λN−2 AN−2+BN−2

A∗
N−1+B∗

N−1 0 0 0 ... 0 μN−1 2 AN−1+BN−1+λN−1

B∗
N 0 0 0 ... 0 0 μN AN+BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f ′
Δ(x0)
M1

M2

M3

...
MN−3

MN−2

MN−1

MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

...
dN−3

dN−2

dN−1

dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The periodic cubic spline FIF is computed by using (3.13).
We confine ourselves to the boundary conditions of Type-I, Type-II, and Type-III

only for the convergence results in section 4 although, in addition to the above kinds
of boundary conditions, the following types of boundary conditions are also admissible
in our approach.

Boundary conditions of Type-IV: In this case, the values of derivatives of given
function are known at either initial or final endpoint of the interval, i.e., f ′

Δ(x0) =

Φ′(x0), f
′′

Δ(x0) = Φ′′(x0) = M0 or f ′
Δ(xN ) = Φ′(xN ), f

′′

Δ(xN ) = Φ′′(xN ) = MN .
Barnsley and Harrington [1] used the former set of conditions to obtain the cubic
spline FIF by employing an involved algebraic method.

Boundary conditions of Type-V: In this type of boundary condition, two sets of
conditions are possible depending on the values of different order of the derivatives
at both endpoints, i.e., f ′

Δ(x0) = Φ′(x0), f
′′

Δ(xN ) = Φ′′(xN ) = MN or f ′
Δ(xN ) =

Φ′(xN ), fΔ
′′(x0) = Φ′′(x0) = M0. In order to find the respective unknowns, the

square matrix of order (N + 1) for the boundary conditions of Type-IV and Type-V
can be obtained from (3.10).

Boundary conditions of Type-VI: Two linear equations involving M0, f ′
Δ(x0),

f ′
Δ(xN ), and MN are considered in this case such that these and (3.10) form a linearly

independent system of equations. The resulting square matrix of order (N + 3) can
be solved to find all (N + 3) unknowns simultaneously.

Using one of the above types of boundary conditions and solving the corresponding
system of equations, the values f ′

Δ(x0),M0,M1, . . . ,MN and f ′
Δ(xN ) are determined.

These values of Mn, n = 0, 1, 2, . . . , N , are used in the construction of an associated
IFS given by

{R2;ωn(x, y) = (Ln(x), Fn(x, y)), n = 1, 2, . . . , N},(3.14)

where Ln(x) = anx + bn and

Fn(x, y) = a2
n

{
αnfΔ(x) +

(Mn − αnMN )(x− x0)
3

6(xN − x0)
+

(Mn−1 − αnM0)(xN − x)3

6(xN − x0)

− (Mn−1 − αnM0)(xN − x0)(xN − x)

6
− (Mn − αnMN )(xN − x0)(x− x0)

6

+

(
yn−1

a2
n

− αny0

)
xN − x

xN − x0
+

(
yn
a2
n

− αnyN

)
x− x0

xN − x0

}
.

(3.15)
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The graph of the desired cubic spline is the fixed point of the IFS given by (3.14).
Remarks. 1. If the vertical scaling factor αn = 0 for n = 1, 2, . . . , N , Fn(x, y)

reduces to a cubic polynomial in each subinterval of I so that in this case the resulting
FIF is a classical cubic spline.

2. By the fixed point theorem, with prescribed ordinates at mesh points, the
nonperiodic spline FIF always exists and is unique for a given choice of vertical scaling
factors. This spline FIF has simple end supports (M0 = 0,MN = 0), prescribed end
moments or simple supports at points beyond mesh extremities. Similarly, the periodic
spline FIF exists and is unique for a given data and a given choice of vertical scaling
factors. Since the moments depend upon the vertical scaling factors αn, by changing
αn, infinitely many nonperiodic splines or periodic splines having the same boundary
conditions can be constructed. This gives an additional advantage for the applications
of the cubic spline FIF over the applications of the classical cubic spline since there
is no flexibility in choosing the latter once the boundary conditions are fixed.

3. Clearly, the replacement of yn by yn + c does not affect the right-hand sides
of (3.7)–(3.9). Thus, fΔ(Y ;x) + η = fΔ(Ȳ ;x), where Ȳ : ȳ0, ȳ1, . . . , ȳN and ȳn =
yn + η, n = 0, 1, 2, . . . , N , with η being a constant. Since the moments Mn do not
change by the translation of the ordinates by a constant η, it follows that it is possible
to associate more than one cubic spline FIF for a given set of moments Mn. This
property of cubic spline FIF fΔ is analogous to the corresponding property of the
periodic classical spline [19].

4. The existence of spline FIF fΔ gives (3.7)–(3.9). Further, if spline FIF fΔ is
periodic, adding (3.7) to (3.9) gives

N∑
n=1

[(hn + hn+1)Mn − 2αnhnMN ] = 0.(3.16)

The condition (3.16) is therefore a necessary condition for the existence of the periodic
cubic spline FIF for prescribed moments Mn. With αn = 0 for n = 1, 2, . . . , N,
the condition (3.16) reduces to the necessary condition for the existence of periodic
classical cubic spline associated with Mn [19, p. 17].

5. For a prescribed set of data and a suitable choice of αn satisfying 0 ≤ |αn| < 1,
it follows from (3.15) that, on the space F∗ = {f ∈ C2(I,R) | f(x0) = y0 and f(xN ) =
yN}, cubic spline FIF fΔ is the fixed point of Read–Bajraktarević operator T ∗ defined
by

T ∗f(x) = a2
n

{
αnf(L−1

n (x)) +
(Mn − αnMN )(L−1

n (x) − x0)
3

6(xN − x0)

+
(Mn−1 − αnM0)(xN − L−1

n (x))3

6(xN − x0)
− (Mn−1 − αnM0)(xN − x0)(xN − L−1

n (x))

6

− (Mn − αnMN )(xN − x0)(L
−1
n (x) − x0)

6

+

(
yn−1

a2
n

− αny0

)
xN − L−1

n (x)

xN − x0
+

(
yn
a2
n

− αnyN

)
L−1
n (x) − x0

xN − x0

}
,

(3.17)

where x ∈ In for n = 1, 2, . . . , N. Since (3.10) is derived from the fixed point relation
T ∗fΔ = fΔ, the solution of each of the equations (3.11)–(3.13) is unique due to
uniqueness of the fixed point. Hence, the coefficient matrices in the systems (3.11)–
(3.13) are invertible.
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6. The moment integral Φm =
∫
I
xmΦ(x) dx, m = 0, 1, 2, . . . , of the data

generating function Φ can be approximately calculated by integral moments fm
Δ ≡∫

I
xmfΔ(x) dx of the cubic spline FIF. One can evaluate explicitly the moment inte-

gral fm
Δ in terms of fm−1

Δ , fm−2
Δ , . . . , f0

Δ, the data points, the vertical scaling factors
αn, n = 1, 2, . . . , N , and Qm =

∫
I
xmQ(x) dx, where Q(x) = qn ◦ L−1

n (x), x ∈ In.
Thus, Barnsley and Harrington’s query [1] regarding the moment integrals in case of
reverse horizontal scaling is already taken into account in our construction.

4. Convergence of cubic spline FIFs. Define a sequence {Δk} of meshes on
[x0, xN ] as Δk : x0 = xk,0 < xk,1 < · · · < xk,Nk

= xN , then set hk,n = xk,n − xk,n−1

and ‖Δk‖ = max1≤n≤Nk
hk,n.

We establish that sequences of cubic spline FIFs {fΔk
(x)} converge to Φ(x) on

suitable sequences of meshes {Δk} at the rate of square of the mesh norm ‖Δk‖,
where Φ ∈ Cr(I), r = 2, 3, or 4, is the data generating function. Since the matrices
associated with the cubic spline FIF, satisfying the boundary conditions of Type-I,
Type-II, or Type-III (periodic), are not, in general, diagonally dominant and f

′′

Δ(x) is
not piecewise linear, the convergence procedure for classical cubic spline [19] cannot
be adopted for establishing the convergence of the cubic spline FIF. Our convergence
results for cubic spline FIFs are in fact derived by using the convergence results for
classical splines.

Let F∗ be the set of cubic spline FIFs on the given mesh Δ, interpolating the
values yn at the mesh points. From (3.17), it is clear that for x ∈ I = [x0, xN ],

fΔ(Ln(x)) = a2
nαnfΔ(x) + a2

nqn(x),(4.1)

where qn(x) is a cubic polynomial for n = 1, 2, . . . ,N. Throughout the sequel, we
assume |αn| ≤ s < 1 for a fixed s and denote qn(αn, x) ≡ qn(x) for n = 1, 2, . . . , N.

Lemma 4.1. Let fΔ(x) and SΔ(x), respectively, be the cubic spline FIF and the
classical cubic spline with respect to the mesh Δ : x0 < x1 < · · · < xN , interpolating a
set of ordinates {y0, y1, . . . , yN} at the mesh points. Let the cubic polynomial qn(αn, x)
associated with the IFS for FIF fΔ(x) satisfy∣∣∣∣∂1+rqn(τn, x)

∂αn∂xr

∣∣∣∣ ≤ Kr(4.2)

for |τn| ∈ (0, sarn), x ∈ In, r = 0, 1, 2, and n = 1, 2, . . . , N. Then,

‖f (r)
Δ − S

(r)
Δ ‖∞ ≤ ‖Δ‖2−r max1≤n≤N |αn|

|I|2−r − ‖Δ‖2−r max1≤n≤N |αn|
(‖S(r)

Δ ‖∞ + Kr), r = 0, 1, 2,

(4.3)

where |I| = |xN − x0|.
Proof. Denote Br = [−sar1, sa

r
1]×[−sar2, sa

r
2]×· · ·×[−sarN , sarN ] ≡

⊗N
n=1[−sarn, sa

r
n].

Let α = (α1, α2, . . . , αN ) ∈ B0 and r = 0. Since cubic spline FIF fΔ is unique for
a set of scaling factors α ∈ B0 and a prescribed boundary condition, using (3.17) the
Read–Bajraktarević operator T ∗

α : F∗ → F∗ can be rewritten as

T ∗
αf

∗(x) = a2
nαnf

∗(L−1
n (x)) + a2

nqn(αn, L
−1
n (x)), x ∈ In, n = 1, 2, . . . , N.(4.4)

For a given α ∈ B0 and at least one αn 	= 0 in (4.4), cubic spline FIF fΔ is the fixed
point of T ∗

α. For α∗ = (0, 0, . . . , 0) ∈ B0, the classical cubic spline SΔ is the fixed
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point of T ∗
α∗ , since in this case qn(αn, x) is a polynomial only in x for n = 1, 2, . . . , N.

Therefore, using (4.4), for x ∈ In,

|T ∗
αfΔ(x) − T ∗

αSΔ(x)| = |a2
nαnfΔ(L−1

n (x)) + a2
nqn(αn, L

−1
n (x))

−[a2
nαnSΔ(L−1

n (x)) + a2
nqn(αn, L

−1
n (x))]|

≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| ‖fΔ − SΔ‖∞.

Since the above inequality holds for n = 1, 2, . . . , N, it follows that

‖T ∗
αfΔ − T ∗

αSΔ‖∞ ≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| ‖fΔ − SΔ‖∞.(4.5)

Further, for x ∈ In, using (4.4) and Mean Value Theorem,

|T ∗
αSΔ(x) − T ∗

α∗SΔ(x)| = |a2
nαnSΔ(L−1

n (x)) + a2
nqn(αn, L

−1
n (x)) − a2

nqn(0, L−1
n (x))|

≤ a2
n|αn|‖SΔ‖∞ + a2

n|αn|
∣∣∣∣∂qn(τn, L

−1
n (x))

∂αn

∣∣∣∣
≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| (‖SΔ‖∞ + K0).

Since the above inequality holds for n = 1, 2, . . . , N,

‖T ∗
αSΔ − T ∗

α∗SΔ‖∞ ≤ ‖Δ‖2

|I|2 max
1≤n≤N

|αn| (‖SΔ‖∞ + K0).(4.6)

Using (4.5)–(4.6) together with the inequality

‖fΔ − SΔ‖∞ = ‖T ∗
αfΔ − T ∗

α∗SΔ‖∞ ≤ ‖T ∗
αfΔ − T ∗

αSΔ‖∞ + ‖T ∗
αSΔ − T ∗

α∗SΔ‖∞

gives that

‖fΔ − SΔ‖∞ ≤ ‖Δ‖2 max1≤n≤N |αn|
|I|2 − ‖Δ‖2 max1≤n≤N |αn|

(‖SΔ‖∞ + K0).

This proves Lemma 4.1 for r = 0. For r = 1, 2, the proof of the lemma is analo-
gous to the proof given above for r = 0, by taking B1, B2, respectively, in place of
B0 and defining Read–Bajraktarević operator on F∗

r = {f ∈ C2−r(I,R) | f(x0) =
y0 and f(xN ) = yN} by

T ∗f (r)(x) = a2−r
n f (r)(L−1

n (x)) + a2−r
n q(r)

n (αn, L
−1
n (x)), r = 1, 2,

in place of (4.4).
For studying the convergence of cubic spline FIFs to a data generating function

through sequences of meshes {Δk} on [x0, xN ], define the following types of meshes
depending upon vertical scaling factors αk,n.
Class A {{Δk} : For each k,max1≤n≤Nk

|αk,n| ≤ ‖Δk‖ < 1}.
Class B {{Δk} : For each k, |αk,i| > ‖Δk‖ for some i, 1 ≤ i ≤ Nk}.

The convergence of a suitable sequence of cubic spline FIFs to the function Φ in
C2[x0, xN ] generating the interpolation data is described by the following theorem.
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Theorem 4.2. Let Φ ∈ C2[x0, xN ] and cubic spline FIFs fΔk
(x) satisfy boundary

conditions of Type-I, Type-II, or Type-III (periodic) on a sequence of meshes {Δk} on
[x0, xN ] with limk→∞ ‖Δk‖ = 0. If {Δk} is in Class A, then

‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r), r = 0, 1, 2.(4.7)

Further, if {Δk} is in Class B, then

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r), r = 0, 1, 2.(4.8)

Proof. By Lemma 4.1, each element of the sequence {Δk} satisfies

‖f (r)
Δk

− S
(r)
Δk

‖∞ ≤ ‖Δk‖2−r max1≤n≤Nk
|αk,n|

|I|2−r − ‖Δk‖2−r max1≤n≤Nk
|αk,n|

(‖S(r)
Δk

‖∞ + Kr), r = 0, 1, 2.

(4.9)

Further, it is known that [19, 20]

‖Φ(r) − S
(r)
Δk

‖∞ ≤ 5‖Δk‖2−rω(Φ(r); ‖Δk‖) (r = 0, 1, 2),(4.10)

where ω(Φ;x) is the modulus of continuity of Φ(x). By using the triangle inequality
and (4.10), it follows that

‖S(r)
Δk

‖∞ ≤ ‖Φ(r)‖∞ + 5‖Δk‖2−rω(Φ(r); ‖Δk‖).(4.11)

The inequality

‖Φ(r) − f
(r)
Δk

‖∞ ≤ ‖Φ(r) − S
(r)
Δk

‖∞ + ‖S(r)
Δk

− f
(r)
Δk

‖∞(4.12)

together with (4.9)–(4.11) gives

‖Φ(r) − f
(r)
Δk

‖∞ ≤‖Δk‖2−r

{
5ω(Φ(r); ‖Δk‖)

+
(‖Φ(r)‖∞ + 5‖Δk‖2−rω(Φ(r); ‖Δk‖) + Kr) max1≤n≤Nk

|αk,n|
|I|2−r − ‖Δk‖2−r max1≤n≤Nk

|αk,n|

}
.

(4.13)

Since Φ ∈ C2(I) and max1≤n≤Nk
|αk,n| ≤ ‖Δk‖ < 1, the right-hand side of (4.13)

tends to zero as k → ∞. The convergence result (4.7) for Class A therefore follows
from the error estimate (4.13).

Next, we obtain the convergence result (4.8) for Class B. Since max1≤nk≤Nk
|αnk

| ≤
s < 1 (cf. definition (4.1)), (4.9) reduces to

‖f (r)
Δk

− S
(r)
Δk

‖∞ ≤ ‖Δk‖2−rs

|I|2−r − ‖Δk‖2−rs
(‖S(r)

Δ ‖∞ + Kr), r = 0, 1, 2.(4.14)

The inequalities (4.10), (4.11), and (4.14) together with (4.12) give

‖Φ(r) − f
(r)
Δk

‖∞ ≤ ‖Δk‖2−r

{
5ω(Φ(r); ‖Δk‖)(4.15)

+
(‖Φ(r)‖∞ + 5‖Δk‖2−rω(Φ(r); ‖Δk‖) + Kr)s

|I|2−r − ‖Δk‖2−rs

}
.
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The convergence result (4.8) for Class B now follows from (4.15).

The convergence of a suitable sequence of cubic spline FIFs to the function Φ in
C3[x0, xN ] generating the interpolation data is given by the following theorem.

Theorem 4.3. Let Φ ∈ C3[x0, xN ] and cubic spline FIFs fΔk
(x) satisfy boundary

conditions of Type-I, Type-II, or Type-III(periodic) on a sequence of meshes {Δk} on

[x0, xN ] with limk→∞ ‖Δk‖ = 0 and ‖Δk‖
min1≤n≤Nk

hk,n
≤ β < ∞. If {Δk} is in Class A,

then

‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r), r = 0, 1, 2.(4.16)

Further, if {Δk} is in Class B, then

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r), r = 0, 1, 2.(4.17)

Proof. It is known that [19, 21], for r = 0, 1, 2,

‖Φ(r) − S
(r)
Δk

‖∞ ≤ 5

3
‖Δk‖3−r(3 + K̄)ω(Φ(3); ‖Δk‖),(4.18)

where K̄ = 8β2(1 + 2β)(1 + 3β).

Now, (4.9) and (4.18) together with (4.12) give

‖Φ(r)−f
(r)
Δk

‖∞ ≤ ‖Δk‖2−r

{
5

3
‖Δk‖(3 + K̄)ω(Φ(3); ‖Δk‖)

+
(‖Φ(r)‖∞ + 5

3‖Δk‖(3 + K̄)ω(Φ(3); ‖Δk‖) + Kr) max1≤n≤Nk
|αk,n|

|I|2−r − ‖Δk‖2−r max1≤n≤Nk
|αk,n|

}
.

For the sequence of meshes in Class A or Class B, the relations (4.16)–(4.17) now
follow immediately from the above error estimate.

The convergence of a suitable sequence of cubic spline FIFs to the function Φ in
C4[x0, xN ] generating the interpolation data is described by the following theorem.

Theorem 4.4. Let Φ ∈ C4[x0, xN ] and cubic spline FIFs fΔk
(x) satisfy bound-

ary conditions of Type-I or Type-II on a sequence of meshes {Δk} on [x0, xN ] with

limk→∞ ‖Δk‖ = 0 and ‖Δk‖
min1≤n≤Nk

hk,n
≤ β < ∞. If {Δk} is in Class A, then

‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r), r = 0, 1, 2.(4.19)

Further, if {Δk} is in Class B, then

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r), r = 0, 1, 2.(4.20)

Proof. It is known that [22]

‖Φ(r) − S
(r)
Δk

‖∞ ≤ Lr‖Φ(4)‖∞‖Δk‖4−r, r = 0, 1, 2, 3,(4.21)
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where L0 = 5/384, L1 = 1/24, L2 = 3/8, and L3 = (β + β−1)/2. The inequalities
(4.9) and (4.21) together with (4.12) give the error estimate

‖Φ(r) − f
(r)
Δk

‖∞ ≤‖Δk‖2−r

{
Lr‖Φ(4)‖∞‖Δk‖2

+
(‖Φ(r)‖∞ + Lr‖Φ(4)‖∞‖Δk‖4−r + Kr) max1≤n≤Nk

|αk,n|
|I|2−r − ‖Δk‖2−r max1≤n≤Nk

|αk,n|

}
.

(4.22)

The convergence results (4.19) and (4.20) now follow from (4.22).
Remarks. 1. Theorem 4.4 generalizes a result of Navascués and Sebastián [23]

proved only for uniform meshes with fixed vertical scaling factors.
2. If Φ(2) satisfies a Hölder condition of order τ, 0 < τ ≤ 1, Theorem 4.2

gives that, for r = 0, 1, 2, ‖Φ(r) − f
(r)
Δk

‖∞ = ◦(‖Δk‖2−r) if Δk is in Class A and

‖Φ(r) − f
(r)
Δk

‖∞ = ©(‖Δk‖2−r) if Δk is in Class B. This provides an analogue of
the corresponding result for classical cubic splines [19, Theorem 2.3.3]. The same

estimates on ‖Φ(r) − f
(r)
Δk

‖∞ follow from Theorem 4.3 or Theorem 4.4 if Φ(3) or Φ(4),
respectively, satisfies the Hölder condition of order τ, 0 < τ ≤ 1.

3. It follows from Theorems 4.2–4.4 that the sequence of cubic spline FIFs f
(r)
Δk

converges uniformly to Φ(r) for r = 0, 1 and if Δk is in Class A, f
(2)
Δk

(x) converges

uniformly to Φ(2)(x), since, for r = 2, the vertical scaling factors can be chosen
suitably depending on the mesh norm.

5. Examples of cubic spline FIFs. Using the IFS given by (3.14), we first
computationally generate examples of cubic spline FIFs with the set of vertical scaling
factors as αn = 0.8, n = 1, 2, 3, and the interpolation data as {(0, 0), ( 2

5 , 1), ( 3
4 ,−1),

(1, 2)} for the nonperiodic splines and as {(0, 0), ( 2
5 , 1), ( 3

4 ,−1), (1, 0)} for the periodic

splines. These interpolation data give L1(x) = 2
5x, L2(x) = 7

20x + 2
5 , and L3(x) =

1
4x + 3

4 in the IFS (3.14) for all our examples of cubic spline FIFs. For constructing
an example of the cubic spline FIF with a boundary condition of Type-I, we choose
f ′
Δ(x0) = 2 and f ′

Δ(xN ) = 5. With these choices, the system of equations (3.11) is
solved to get the values of moments M0,M1,M2,M3 (Table 1). These moments are
now used in (3.15) for the construction of Fn(x, y) (Table 2). Iterations of this IFS
code generate the desired cubic spline FIF (Figure 2(a)) with a boundary condition
of Type-I. Again, to construct an example of the cubic spline FIF with a boundary
condition of Type-II, we choose M0 = 2 and M3 =5. The values of M1 and M2 (Table
1) are computed by solving the system (3.12). Using (3.15), the coefficients of Fn(x, y),
n =1,2,3, are computed (Table 2). The iterations of the resulting IFS code generate
the cubic spline FIF (Figure 2(c)) with a boundary condition of Type-II. An example
of the cubic spline FIF with a boundary condition of Type-III (periodic), i.e., f ′

Δ(x0) =
f ′
Δ(x3) is constructed and M0 = M3. The values of moments M0,M1,M2,M3 (Table

1) are computed by solving the system (3.13). The associated IFS code for the periodic
cubic spline is obtained from the resulting (3.14). The desired example of the periodic
cubic spline FIF (Figure 2(e)) is generated through iterations of this IFS. Similarly,
with a 2nd set of vertical scaling factors as α1 = α3 = −0.9 and α2 = 0.9, the
examples of cubic spline FIFs (Figure 2(b), (d), (f)) with boundary conditions of
Type-I, Type-II, and Type-III are generated. We note that cubic spline FIFs given
by Figure 2(a)–(b) have completely different shapes though they are generated with
the same boundary conditions of Type-I, whereas the same boundary conditions give
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Table 1

Data for cubic spline FIFs with different boundary conditions.

Figures α1 α2 α3 f′Δ(x0) M0 M1 M2 M3 f′Δ(x3)

2(a) 0.8 0.8 0.8 2 −77.8748 −331.3818 −59.6840 −462.5397 5

2(b) −0.9 0.9 −0.9 2 26.2835 −31.5521 81.3627 −67.5836 5

2(c) 0.8 0.8 0.8 9.4232 2 −65.0164 93.8441 5 19.4085

2(d) −0.9 0.9 −0.9 3.4589 2 −34.3620 79.1610 5 13.5633

2(e) 0.8 0.8 0.8 8.1939 5.4523 −43.8970 63.5040 5.4523 8.1939

2(f) −0.9 0.9 −0.9 4.2258 −3.7995 −30.8481 46.0958 −3.7995 4.2258

2(g) 0.8 0.8 0.8 2 5 −219.5278 25.0565 −281.2847 9.7366

2(h) −0.9 0.9 −0.9 2 5 −38.5155 79.6443 30.0172 16.9051

2(i) 0.8 0.8 0.8 −49.6 1066.0 111.1 610.8 5 2

2(j) −0.9 0.9 −0.9 61.5792 −334.8459 59.9983 42.3613 5 2

2(k) 0.8 0.8 0.8 2 129.4060 −44.2624 155.5007 5 17.3112

2(l) −0.9 0.9 −0.9 2 11.6444 −36.7487 79.9084 5 13.8840

2(m) 0.8 0.8 0.8 −1.4427 2 −297.1132 −11.3357 −423.6607 5

2(n) −0.9 0.9 −0.9 5.9477 2 −25.6023 78.7498 −61.1447 5

2(o) 0.8 0.8 0.8 9.7621 −14.1432 −79.5646 80.6184 −16.9354 18.9354

2(p) −0.9 0.9 −0.9 5.7448 −8.1171 −29.6265 77.9665 −9.3573 11.3573

just one interpolating classical cubic spline. Thus, in our approach, an added flexibility
is offered to an experimenter depending upon the need of a problem for the choice of a
suitable cubic spline FIF. Similarly, Figure 2(c)–(d) gives a comparison of shape and
nature of cubic spline FIFs with a boundary condition of Type-II and Figure 2(e)–(f)
gives such a comparison for periodic cubic spline FIFs to see the effect of vertical
scaling factors on their shapes.

For construction of IFS for cubic spline FIFs (Figure 2(g) and 2(i)) with boundary
conditions of Type-IV with first set of vertical scaling factors as αn = 0.8, n = 1, 2, 3,
we choose f ′

Δ(x0) = 2, M0 = 5, and f ′
Δ(x3) = 2, M3 = 5, respectively. The examples

of cubic spline FIFs (Figure 2(k) and 2(m)) with boundary conditions of Type-V
are constructed with αn = 0.8, n = 1, 2, 3, by choosing f ′

Δ(x0) = 2, M3 = 5, and
M0 = 2, f ′

Δ(x3) = 5, respectively. Finally, for constructing the cubic spline FIF
(Figure 2(o)) with a boundary condition of Type-VI, the associated IFS is generated
by choosing αn = 0.8, n = 1, 2, 3, and f ′

Δ(x0),M0,M3, and f ′
Δ(x3) are chosen such

that 3f ′
Δ(x0) + 2M0 = 1 and f ′

Δ(x3) + M3 = 2. The examples of cubic spline FIFs
(Figure 5.1(h), (j), (l), (n), (p)) with boundary conditions of Type-IV, V, or VI are
analogously constructed by computing the associated IFS with α1 = α3 = −0.9 and
α2 = 0.9. The effect of vertical scaling factors on the shape and nature of cubic spline
FIFs with boundary conditions of Type-IV, V, or VI is demonstrated in Figure 2(g)–
(p). Thus, infinitely many cubic spline FIFs with different shapes can be generated
by varying scaling factor sets for any prescribed boundary conditions. This gives a
vast flexibility in the choice of cubic spline FIF according to the need of the problem.

A normal-size font entry in Table 1 is for the value assumed for a parameter in
a particular example. An entry in script-size font in Table 1 is for the value of the
parameters that are computed by using (3.10). The entries for the coefficients of
Fn(x, y) in Table 2 are computed by using (3.15). All the entries in these tables are
rounded off up to four decimal places.

6. Conclusion. A new method is introduced in the present work for the con-
struction of Cr-FIFs so that the complex algebraic method in [1] for construction of
Cr-FIFs using complicated matrices is no longer needed. Our method allows admis-
sibility of any kind of boundary conditions while the boundary conditions in [1] are
restricted to only at the initial endpoint x0 of the interval [x0, xN ]. In our approach,
r equations involving the spline values or the values of its derivatives at the boundary
points are chosen such that the resulting (r + 2)N + 2r equations are linearly inde-
pendent. This results in generation of a unique Cr-FIF for a prescribed data and a
suitable set of vertical scaling factors. This answers a query of Barnsley and Harring-
ton [1, p. 33], regarding uniqueness of the Cr-FIF for a suitable set of vertical scaling
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(a) Cubic spline FIF with αn = 0.8, n = 1, 2, 3,

f ′
Δ(x0) = 2, and f ′

Δ(x3) = 5.
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(b) Cubic spline FIF with α1 = α3 = −0.9,

α2 = 0.9, f ′
Δ(x0) = 2, and f ′

Δ(x3) = 5.
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(c) Cubic spline FIF with αn = 0.8, n = 1, 2, 3,

M0 = 2, and M3 = 5.
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(d) Cubic spline FIF with α1 = α3 = −0.9,

α2 = 0.9, M0 = 2, and M3 = 5.
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(e) Periodic cubic spline FIF with

αn = 0.8, n = 1, 2, 3.
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(f) Periodic cubic spline FIF with

α1 = α3 = −0.9, α2 = 0.9.
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(g) Cubic spline FIF with αn = 0.8, n = 1, 2, 3,

f ′
Δ(x0) = 2, and M0 = 5.
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(h) Cubic spline FIF with α1 = α3 = −0.9,

α2 = 0.9, f ′
Δ(x0) = 2, and M0 = 5.

Fig. 2. Cubic spline FIFs with different boundary conditions.
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(i) Cubic spline FIF with αn = 0.8, n = 1, 2, 3,
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(j) Cubic spline FIF with α1 = α3 = −0.9, α2 = 0.9,

f ′
Δ(x3) = 2, and M3 = 5.
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(k) Cubic spline FIF with αn = 0.8, n = 1, 2, 3,

f ′
Δ(x0) = 2, and M3 = 5.
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(l) Cubic spline FIF with α1 = α3 = −0.9, α2 = 0.9,

f ′
Δ(x0) = 2, and M3 = 5.
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(m) Cubic spline FIF with αn = 0.8,

n = 1, 2, 3, f ′
Δ(x3) = 2, and M0 = 5.
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(n) Cubic spline FIF with α1 = α3 = −0.9,

α2 = 0.9, f ′
Δ(x3) = 2, and M0 = 5.
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(o) Cubic spline FIF with αn = 0.8, n = 1, 2, 3,

3f ′
Δ(x0) + 2M0 = 1, and f ′

Δ(x3) + M3 = 2.
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(p) Cubic spline FIF with α1 = α3 = −0.9,
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Δ(x0) + 2M0 = 1, and f ′

Δ(x3) +M3 = 2.

Fig. 2. Cont.
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factors. The construction of cubic spline FIFs, using the moments Mn = f
′′

Δ(xn), is
initiated for the first time in the present work, resulting in a satisfactory generalization
of the classical cubic spline theory.

For the data generating function Φ ∈ Cr[x0, xn], r = 2, 3, or 4, it is proved
that (cf. Theorems 4.2–4.4), the sequence of cubic spline FIFs {fΔk

} converges to Φ
with arbitrary degree of accuracy for the sequences of meshes in Class A or Class B
for boundary conditions of Type-I, Type-II, or Type-III. Our convergence results in
section 4 are obtained with more general conditions than those in [23] wherein only
uniform meshes are considered in the case Φ ∈ C(4)[x0, xn]. The upper bounds on error
in approximation of Φ and its derivatives by cubic spline FIFs fΔ and its derivatives,
respectively, with different boundary conditions are also obtained by results in section
4. As a consequence of our results, the data generating function Φ that satisfies
Φ(2) ∈ Lip τ, 0 < τ < 1, can be approximated satisfactorily by a fractal function fΔ

by choosing vertical scaling factors suitably such that f
(2)
Δ ∈ Lip τ.

The vertical scaling factors αn are important parameters in the construction of
Cr-FIFs or cubic spline FIFs. For given boundary conditions, in our approach an
infinite number of Cr-FIFs or cubic spline FIFs can be constructed interpolating the
same data by choosing different sets of vertical scaling factors. Thus, according to
the need of an experiment for simulating objects with smooth geometrical shapes,
a large flexibility in the choice of a suitable interpolating smooth fractal spline is
offered by our approach. As in the case of vast applications of classical splines in
CAM, CAGD, and other mathematical, engineering applications [12, 13, 14, 15], it is
felt that cubic spline FIFs generated in the present work can find rich applications in
some of these areas. Since the cubic spline FIF is invariant in all scales, it can also be
applied to image compression and zooming problems in image processing. Further, as
classical cubic splines are a special case of cubic spline FIFs, it should be possible to
use cubic spline FIFs for mathematical and engineering problems where the classical
spline interpolation approach does not work satisfactorily.
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