Assignment 10: Functions of several variables (Continuity and Differentiabilty)

- 1. (D) Examine the following functions for continuity at the point (0,0), where f(0,0) = 0 and f(x,y) for $(x,y) \neq (0,0)$ is given by
 - *i*) |x| + |y| *i*) $\frac{xy}{\sqrt{x^2+y^2}}$ *ii*) $\frac{xy}{x^2+y^2}$ *iii*) $\frac{x^4-y^2}{x^4+y^2}$ *iv*) $\frac{x^2y}{x^4+y^2}$.

- 4. (D) Let f(x, y) be defined in $S = \{(x, y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$. Suppose that the partial derivatives of f exist and are bounded in S. Then show that f is continuous in S.
- 5. (D) Let $f(x,y) = xy \frac{x^2 y^2}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and 0, otherwise. Prove that
 - (a) $f_x(0,y) = -y$ and $f_y(x,0) = x$ for all x and y;
 - (b) $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$ and (c) f(x,y) is differentiable at (0,0).

Assignment 10 - Solutions

- 1. (a) The function is continuous everywhere as $|x_n| + |y_n| \rightarrow |x_0| + |y_0|$ whenever $(x_n, y_n) \rightarrow (x_0, y_0)$.
 - (b) The function is continuous because $|\frac{xy}{\sqrt{x^2+y^2}}| \le \frac{|x^2+y^2|}{\sqrt{x^2+y^2}} = \sqrt{x^2+y^2} \to 0$, as $(x,y) \to 0$.
 - (c) Let y = mx. Then $\frac{xy}{x^2 + y^2} = \frac{m}{1 + m^2} \forall (x, y) \neq (0, 0)$. Therefore, f is discontinuous at (0, 0).
 - (d) Let $y = mx^2$. Then $\frac{x^4 y^2}{x^4 + y^2} = \frac{1 m^2}{1 + m^2} \forall (x, y) \neq (0, 0)$. Therefore, f is discontinuous at (0, 0).
 - (e) Let $y = mx^2$. Then $\frac{x^2y}{x^4 + y^2} = \frac{m}{1 + m^2} \forall (x, y) \neq (0, 0)$. Therefore, f is discontinuous at (0, 0).

4. Let $|f_x(x,y)| \leq M$ and $|f_y(x,y)| \leq M$, $\forall (x,y) \in S$. Then, $f(x+h,y+k) - f(x,y) = f(x+h,y+k) - f(x+h,y) + f(x+h,y) - f(x,y) = kf_y(x+h,y+\theta_1k) + hf_x(x+\theta_2h,y)$, (by the mean value theorem). Hence, $|f(x+h,y+k) - f(x,y)| \leq M(|h|+|k|) \leq 2M\sqrt{h^2+k^2}$. Hence, for $\epsilon \geq 0$, choose $\delta = \epsilon^{\epsilon}$ or use the sequential argument to show that

Hence, for $\epsilon > 0$, choose $\delta = \frac{\epsilon}{2M}$ or use the sequential argument to show that the function is continuous.

- 5. (a) Note that $f_y(h, 0) = \lim_{k \to 0} \frac{f(h,k) f(h,0)}{k} = \lim_{k \to 0} \frac{h(h^2 k^2)}{h^2 + k^2} = h.$
 - (b) Note that $f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) f_y(0,0)}{h} = 1$. Similarly, $f_{xy}(0,0) = -1$.
 - (c) Done in the class (see the lecture notes).