Assignment 10: Functions of several variables (Continuity and Differentiabilty)

1. (D) Examine the following functions for continuity at the point $(0,0)$, where $f(0,0)=0$ and $f(x, y)$ for $(x, y) \neq(0,0)$ is given by
i) $|x|+|y|$
i) $\frac{x y}{\sqrt{x^{2}+y^{2}}}$
ii) $\frac{x y}{x^{2}+y^{2}}$
iii) $\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$
iv) $\frac{x^{2} y}{x^{4}+y^{2}}$.
2. (D) Let $f(x, y)$ be defined in $S=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, c<y<d\right\}$. Suppose that the partial derivatives of f exist and are bounded in S. Then show that f is continuous in S.
3. (D) Let $f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and 0 , otherwise. Prove that
(a) $f_{x}(0, y)=-y$ and $f_{y}(x, 0)=x$ for all x and y;
(b) $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$ and
(c) $f(x, y)$ is differentiable at $(0,0)$.

Assignment 10 - Solutions

1. (a) The function is continuous everywhere as $\left|x_{n}\right|+\left|y_{n}\right| \rightarrow\left|x_{0}\right|+\left|y_{0}\right|$ whenever $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$.
(b) The function is continuous because $\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}\right| \leq \frac{\left|x^{2}+y^{2}\right|}{\sqrt{x^{2}+y^{2}}}=\sqrt{x^{2}+y^{2}} \rightarrow$ 0 , as $(x, y) \rightarrow 0$.
(c) Let $y=m x$. Then $\frac{x y}{x^{2}+y^{2}}=\frac{m}{1+m^{2}} \forall(x, y) \neq(0,0)$. Therefore, f is discontinuous at $(0,0)$.
(d) Let $y=m x^{2}$. Then $\frac{x^{4}-y^{2}}{x^{4}+y^{2}}=\frac{1-m^{2}}{1+m^{2}} \forall(x, y) \neq(0,0)$. Therefore, f is discontinuous at $(0,0)$.
(e) Let $y=m x^{2}$. Then $\frac{x^{2} y}{x^{4}+y^{2}}=\frac{m}{1+m^{2}} \forall(x, y) \neq(0,0)$. Therefore, f is discontinuous at $(0,0)$.
2. Let $\left|f_{x}(x, y)\right| \leq M$ and $\left|f_{y}(x, y)\right| \leq M, \forall(x, y) \in S$. Then, $f(x+h, y+k)-f(x, y)=f(x+h, y+k)-f(x+h, y)+f(x+h, y)-f(x, y)=$ $k f_{y}\left(x+h, y+\theta_{1} k\right)+h f_{x}\left(x+\theta_{2} h, y\right)$, (by the mean value theorem).
Hence, $|f(x+h, y+k)-f(x, y)| \leq M(|h|+|k|) \leq 2 M \sqrt{h^{2}+k^{2}}$.
Hence, for $\epsilon>0$, choose $\delta=\frac{\epsilon}{2 M}$ or use the sequential argument to show that the function is continuous.
3. (a) Note that $f_{y}(h, 0)=\lim _{k \rightarrow 0} \frac{f(h, k)-f(h, 0)}{k}=\lim _{k \rightarrow 0} \frac{h\left(h^{2}-k^{2}\right)}{h^{2}+k^{2}}=h$.
(b) Note that $f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=1$. Similarly, $f_{x y}(0,0)=-1$.
(c) Done in the class (see the lecture notes).
