Assignment 11: Directional derivatives, Maxima, Minima, Lagrange Multipliers

1. (D) Let $f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}$ if $y \neq 0$ and $f(x, y)=0$ if $y=0$. Show that f is continuous at $(0,0)$, it has all directional derivatives at $(0,0)$ but it is not differentiable at $(0,0)$.
2. (T) Let $f(x, y)=\frac{1}{2}(| | x|-|y||-|x|-|y|)$. Is f continuous at $(0,0)$? Which directional derivatives of f exist at $(0,0)$? Is f differentiable at $(0,0)$?
3. (T) Find the equation of the surface generated by the normals to the surface $x+2 y z+x y z^{2}=0$ at all points on the z-axis.
4. (T) Examine the following functions for local maxima, local minima and saddle points:
i) $4 x y-x^{4}-y^{4}$
ii) $x^{3}-3 x y$
5. (D) Let $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$. Show that f has a local minimum at $(0,0)$ along every line through $(0,0)$. Does f have a minimum at $(0,0)$? Is $(0,0)$ a saddle point for f ?
6. (T) Find the absolute maxima of $f(x, y)=x y$ on the unit disc $\left\{(x, y): x^{2}+\right.$ $\left.y^{2} \leq 1\right\}$.
7. (D) Assume that among all rectangular boxes with fixed surface area of 20 square meters, there is a box of largest possible volume. Find its dimensions.
8. (D) L\&T produces steel boxes at three different plants in amounts x, y and z, respectively, producing an annual revenue of $R(x, y, z)=8 x y z^{2}-200(x+y+z)$. The company is to produce 100 units annually. How should production be distributed to maximize revenue?
9. (T) Minimize the quantity $x^{2}+y^{2}+z^{2}$ subject to the constraints $x+2 y+3 z=6$ and $x+3 y+9 z=9$.

Assignment 11 - Solutions

1. Note that $|f(x, y)-f(0,0)|=\sqrt{x^{2}+y^{2}}$. Hence the function is continuous.

For $\left\|\left(u_{1}, u_{2}\right)\right\|=1, \quad \lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)}{t}=0$ if $u_{2}=0$ and $\frac{u_{2}}{\left|u_{2}\right|}$ if $u_{2} \neq 0$. Therefore directional derivatives in all directions exist.
Note that $f_{x}(0,0)=0$ and $f_{y}(0,0)=1$. If f is differentiable at $(0,0)$ then $f^{\prime}(0,0)=$ $\alpha=(0,1)$. Note that

$$
\epsilon(h, k)=\frac{\frac{k}{|k|} \sqrt{h^{2}+k^{2}}-k}{\sqrt{h^{2}+k^{2}}} \nrightarrow 0 \text { as }(h, k) \rightarrow(0,0) .
$$

For example, $h=k$ gives $(\sqrt{2}-1) \frac{k}{|k|} \nrightarrow 0$ as $k \rightarrow 0$. Therefore the function is not differentiable at $(0,0)$.
2. $|f(x, y)-f(0,0)| \leq|x|+|y|$. Thus f is continuous at $(0,0)$.
$\lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)-f(0,0)}{t}=\frac{|t|}{2 t}\left\{| | u_{1}\left|-\left|u_{2}\right|\right|-\left|u_{1}\right|-\left|u_{2}\right|\right\}$.
Hence, the directional derivatives of f exist at $(0,0)$ if and only if $\left|\left|u_{1}\right|-\left|u_{2}\right|\right|=$ $\left|u_{1}\right|+\left|u_{2}\right|$, that is, either $u_{1}=0$ or $u_{2}=0$. Since the directional derivatives in all direction do not exist, the function cannot be differentiable at $(0,0)$.
3. The normal to the given surface is $N=\left(1+y z^{2}, 2 z+x z^{2}, 2 y+2 x y z\right)$. The normal at a point on the z-axis is $(1,2 t, 0)$. If (x, y, z) is any point on the given surface generated then $\frac{x}{1}=\frac{y}{2 t}, z=t$. Hence, the surface generated is $y=2 x z($ by eliminating $t)$.
4. (i) For $f(x, y)=4 x y-x^{4}-y^{4}, f_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)=0$ for $\left(x_{0}, y_{0}\right)=(0,0),(1,1)$ or $(-1,-1)$. These are the critical points. By second derivative test, $(0,0)$ ia a saddle point and $(-1,1)$ and $(1,1)$ are local maxima.
(ii) $f(x, y)=x^{3}-3 x y^{2}, f_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)=0$ for $\left(x_{0}, y_{0}\right)=(0,0)$. So $(0,0)$ is the only critical point. Second derivative fails here. Along $y=0, f(x, y)=x^{3}$, hence $(0,0)$ is a saddle point.
5. Let $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$. Along, the x-axis, the local minimum of the function is at $(0,0)$. Let $x=r \cos \theta$ and $y=r \sin \theta$, for a fixed $\theta \neq 0, \pi$ (or let $y=m x$). Then,

$$
f(r \cos \theta, r \sin \theta)=3 r^{4} \sin ^{4} \theta-4 r^{3} \cos ^{2} \theta \sin \theta+r^{2} \sin ^{2} \theta
$$

which is function of one variable. By the second derivative test (for functions of one variable), we see that $(0,0)$ is a local minima.

Since, $f(x, y)=\left(3 x^{2}-y\right)\left(x^{2}-y\right)$, we see that in the region between the parabolas $3 x^{2}=y$ and $y=x^{2}$, the function takes negative values and is positive everywhere else. Thus, $(0,0)$ is a saddle point for f.
6. $f(x, y)=x y \Rightarrow f_{x}=y, f_{y}=x$. Clearly, $(0,0)$ is the only critical point. $f(0,0)=0$.

Let us use the method of lagrange multipliers on $x^{2}+y^{2}=1$. Consider the function $F(x, y, z)=x y-\lambda\left(x^{2}+y^{2}-1\right)$. Here, $F_{x}=y-2 \lambda x, F_{y}=x-2 \lambda y$ and $F_{\lambda}=x^{2}+y^{2}-1$. Therefore, $y=2 \lambda x, x=2 \lambda y \Rightarrow x=0 \Longleftrightarrow y=0$. But, $x^{2}+y^{2}=1$. Hence, $y=4 \lambda^{2} y$.
$\lambda= \pm \frac{1}{2}$ and $y= \pm x \Rightarrow x= \pm \frac{1}{\sqrt{2}}$ and $x= \pm \frac{1}{\sqrt{2}}$.
Hence, we need to compute the absolute maximum and minimum at the points $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. The absolute maximum is attained at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.
7. Let the box have sides of length $x, y, z>0$. Then $V(x, y, z)=x y z$ and $x y+y z+x z=$ 10. Using the method of lagrange multipliers, we see that $y z=\lambda(y+z), x z=\lambda(x+z)$ and $x y=\lambda(x+y)$. It is easy to see that $x, y, z>0$. Now, we can see that $x=y=z$ and therefore, $x=y=z=\sqrt{\frac{10}{3}}$.
8. Use the method of lagrange multipliers, where $\nabla R=\lambda \nabla F$. Here, $F(x, y, z)=$ $x+y+z=100$.
9. Let $F(x, y, z)=x^{2}+y^{2}+z^{2}, g(x, y, z)=x+2 y+3 z$ and $h(x, y, z)=x+3 y+9 z$, where $x+2 y+3 z=6$ and $x+3 y+9 z=9$.
Let λ and μ be such that $\nabla F=\lambda \nabla h+\mu \nabla g$.
We get

$$
\begin{equation*}
\lambda+\mu=2 x, 2 \lambda+3 \mu=2 y \text { and } 3 \lambda+9 \mu=2 z \tag{1}
\end{equation*}
$$

From here, using $x+2 y+3 z=6$ and $x+3 y+9 z=9$, we get $7 \lambda+17 \mu=6$ and $34 \lambda+91 \mu=18$.
Hence, $\mu=-\frac{78}{59}$ and $\lambda=\frac{240}{59}$.
From equation (1), we get $2\left(x^{2}+y^{2}+z^{2}\right)=6 \lambda+9 \mu$, hence the minimum value of of f is $\frac{369}{59}$.

