Assignment 14 : Green's /Stoke's /Gauss's Theorems

1. (T) Use Green's Theorem to compute $\int_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary of the region $\left\{(x, y): x, y \geq 0 \& x^{2}+y^{2} \leq 1\right\}$.
2. (D) Show that the value of the line integral $\int x y^{2} d x+\left(x^{2} y+2 x\right) d y$ around any square depends only on the size of the square and not on its location in the plane.
3. (D) Evaluate $\int_{C} \frac{x d y-y d x}{x^{2}+y^{2}}$ along any simple closed curve in the $x y$ plane not passing through the origin. Distinguish the cases where the region R enclosed by C :
(a) includes the origin (b) does not include the origin.
4. (T) Use Stoke's Theorem to evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z$, where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$ and the orientation of C corresponds to counterclockwise motion in the $x y$ plane.
5. (D) Verify the Stoke's Theorem where $\vec{F}=(y, z, x)$ and S is the part of the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$, oriented with \vec{n} pointing outward.
6. (T) Let $\vec{F}=\frac{\vec{r}}{|\vec{r}|^{3}}$ where $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_{S} \vec{F} \cdot n d \sigma=4 \pi$.
7. (\mathbf{T}) Let D be the domain inside the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$. If $\vec{F}=\left(x^{2}+y e^{z}, y^{2}+z e^{x}, z+x e^{y}\right)$, use the divergence theorem to evaluate $\iint_{\partial D} F \cdot \mathbf{n} d \sigma$.

Assignment 14-Solutions

1. $M=2 x^{2}-y^{2}$ and $N=x^{2}+y^{2}$. By Green's Theorem

$$
\begin{aligned}
& \int_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(N_{x}-M_{y}\right) d y d x \\
& =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} 2(x+y) d y d x=\frac{4}{3} .
\end{aligned}
$$

2. Let R be a square with the boundary C. Then by Green's theorem $\int_{C} x y^{2} d x+\left(x^{2} y+2 x\right) d y=\iint_{R} 2 d x d y=2$ Area(R).
3. (a) Let $M=-\frac{y}{x^{2}+y^{2}}$ and $N=\frac{x}{x^{2}+y^{2}}$. Suppose $(0,0) \in R$.

Since the function is not defined at $(0,0)$, choose C_{α} to be a circle of radius α containing $(0,0)$ and C lies in the interior of R. Let D be the region bounded by the simple closed curves C and C_{α}. In this region $N_{x}-M_{y}=0$.
By Green's Theorem, $\int_{C \cup C_{\alpha}} M d x+N d y=\iint_{D}\left(N_{x}-M_{y}\right) d x d y=0$.
Hence, $\int_{C} M d x+N d y=\int_{-C_{\alpha}} M d x+N d y=2 \pi$.
(b) For a simple closed curve C not containing $(0,0)$, by Green's theorem, we have $\int_{C} M d x+N d y=0$.
4. Let $F=-y^{3} \vec{i}+x^{3} \vec{j}-z^{3} \vec{k}$. By Stoke's Theorem, $\int_{\partial S} F . d r=\iint_{S}(c u r l F) \cdot \vec{n} d \sigma$.

Note that $\nabla \times F=3\left(x^{2}+y^{2}\right) \vec{k}$. Hence, $\int_{\partial S} F . d r=\iint_{D} 3\left(x^{2}+y^{2}\right) d x d y=\frac{3 \pi}{2}$.
5. Let us first evaluate $\iint_{S} \operatorname{curlF} \cdot n d \sigma$. Consider $S:=r(\theta, z)$ where

$$
r(\theta, z)=(\cos \theta, \sin \theta, z) \text { where } 0 \leq \theta \leq 2 \pi \text { and } 0 \leq z \leq 2+\cos \theta
$$

Note that

$$
\operatorname{curlF}=-i-j-k, n=\frac{r_{\theta} \times r_{z}}{\left\|r_{\theta} \times r_{z}\right\|}=\cos \theta i+\sin \theta j+0 k \text { and } \sqrt{E G-F^{2}}=1
$$

Therefore,

$$
\iint_{S} \operatorname{curlF} \cdot n d \sigma=\int_{-\pi}^{\pi} \int_{0}^{2+\cos \theta}(-\cos \theta-\sin \theta) d z d \theta=-\pi
$$

Let C_{1} and C_{2} be the boundary curves of the surface S which are lying in the plane $z=0$ and $z=x+2$ respectively. Consider the parameterizations

$$
C_{1}:=R(\theta)=\cos \theta i+\sin \theta j, \quad 0 \leq \theta \leq 2 \pi
$$

and

$$
C_{2}:=R(\theta)=\cos \theta i+\sin \theta j+(2+\cos \theta) k, \quad 0 \leq \theta \leq 2 \pi .
$$

Then

$$
\oint_{C_{1}} F \cdot d R=\int_{0}^{2 \pi}-\sin ^{2} \theta d \theta=-\pi
$$

and

$$
\oint_{C_{2}} F \cdot d R=\int_{2 \pi}^{0} \ldots \ldots=0
$$

(note that the direction of the integration over C_{2} is in the clockwise direction(see the figure))).
6. Note that div $F=0$. By divergence theorem

$$
\iint_{S} F \cdot n d \sigma=\iint_{S_{\rho}} F \cdot n d \sigma
$$

where S_{ρ} is a sphere of (small) radius ρ with center at origin. On $S_{\rho}, n=\frac{1}{\rho}(x i+y j+z k)$ and hence $F \cdot n=\frac{1}{\rho^{2}}$. Therefore,

$$
\iint_{S_{\rho}} F \cdot n d \sigma=\frac{1}{\rho^{2}} \iint_{S_{\rho}} d \sigma=\frac{1}{\rho^{2}} 4 \pi \rho^{2}=4 \pi .
$$

7. $\operatorname{div} F=2 x+2 y+2 z$. By the divergence theorem,

$$
\iint_{\partial D} F \cdot \vec{n} d \sigma=\iiint_{D} 2(x+y+z) d V=2 \iint_{x^{2}+y^{2} \leq 1}\left(\int_{0}^{x+2}(x+y+z) d z\right) d x d y=\frac{19 \pi}{4}
$$

1sasigmentis-Figures
Q 3:

Q4:

Projection over $x y-p$ ien

Assignment 14 - Fignres
Q 3:

$\stackrel{6}{8}$

