
Assignment 14 : Green’s /Stoke’s /Gauss’s Theorems

1. (T) Use Green’s Theorem to compute
∫
C

(2x2 − y2) dx + (x2 + y2) dy where C

is the boundary of the region {(x, y) : x, y ≥ 0 & x2 + y2 ≤ 1}.
2. (D) Show that the value of the line integral

∫
xy2dx + (x2y + 2x)dy around

any square depends only on the size of the square and not on its location in the
plane.

3. (D) Evaluate
∫
C

xdy−ydx
x2+y2 along any simple closed curve in the xy plane not passing

through the origin. Distinguish the cases where the region R enclosed by C:

(a) includes the origin (b) does not include the origin.

4. (T) Use Stoke’s Theorem to evaluate the line integral
∫
C

−y3 dx+x3 dy−z3 dz,

where C is the intersection of the cylinder x2+y2 = 1 and the plane x+y+z = 1
and the orientation of C corresponds to counterclockwise motion in the xy-
plane.

5. (D) Verify the Stoke’s Theorem where
−→
F = (y, z, x) and S is the part of the

cylinder x2 + y2 = 1 cut off by the planes z = 0 and z = x + 2, oriented with−→n pointing outward.

6. (T) Let
−→
F =

−→r
|−→r |3 where −→r = x

−→
i + y

−→
j + z

−→
k and let S be any surface that

surrounds the origin. Prove that
∫∫

S

−→
F .n dσ = 4π.

7. (T) Let D be the domain inside the cylinder x2 + y2 = 1 cut off by the planes

z = 0 and z = x + 2. If ~F = (x2 + yez, y2 + zex, z + xey), use the divergence
theorem to evaluate

∫ ∫
∂D

F · n dσ.



Assignment 14 - Solutions

1. M = 2x2 − y2 and N = x2 + y2. By Green’s Theorem∫
C

(2x2 − y2)dx + (x2 + y2)dy =
1∫
0

√
1−x2∫
0

(Nx −My)dy dx

=
1∫
0

√
1−x2∫
0

2(x + y)dy dx = 4
3
.

2. Let R be a square with the boundary C. Then by Green’s theorem∫
C

xy2dx + (x2y + 2x)dy =
∫∫
R

2dxdy = 2 Area(R).

3. (a) Let M = − y

x2 + y2
and N =

x

x2 + y2
. Suppose (0, 0) ∈ R.

Since the function is not defined at (0, 0), choose Cα to be a circle of radius α
containing (0, 0) and C lies in the interior of R. Let D be the region bounded by
the simple closed curves C and Cα. In this region Nx −My = 0.

By Green’s Theorem,
∫

C∪Cα

Mdx + Ndy =
∫∫
D

(Nx −My)dx dy = 0.

Hence,
∫
C

Mdx + Ndy =
∫
−Cα

Mdx + Ndy = 2π.

(b) For a simple closed curve C not containing (0, 0), by Green’s theorem, we have∫
C

Mdx + Ndy = 0.

4. Let F = −y3~i + x3~j − z3~k. By Stoke’s Theorem,
∫
∂S

F.dr =
∫ ∫

S

(curl F ).~ndσ.

Note that ∇× F = 3(x2 + y2)~k. Hence,
∫
∂S

F.dr =
∫∫
D

3(x2 + y2)dxdy = 3π
2

.

5. Let us first evaluate
∫∫

S

curlF · ndσ. Consider S := r(θ, z) where

r(θ, z) = (cos θ, sin θ, z) where 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 2 + cos θ.

Note that

curlF = −i− j − k, n =
rθ × rz

‖ rθ × rz ‖
= cos θi + sin θj + 0k and

√
EG− F 2 = 1.

Therefore, ∫ ∫
S

curlF · ndσ =

π∫
−π

2+cos θ∫
0

(− cos θ − sin θ)dzdθ = −π

Let C1 and C2 be the boundary curves of the surface S which are lying in the plane
z = 0 and z = x + 2 respectively. Consider the parameterizations

C1 := R(θ) = cos θi + sin θj, 0 ≤ θ ≤ 2π

and



C2 := R(θ) = cos θi + sin θj + (2 + cos θ)k, 0 ≤ θ ≤ 2π.

Then ∮
C1

F · dR =

2π∫
0

− sin2 θdθ = −π

and ∮
C2

F · dR =

0∫
2π

...... = 0

(note that the direction of the integration over C2 is in the clockwise direction(see the
figure))).

6. Note that div F = 0. By divergence theorem∫ ∫
S

F · ndσ =

∫ ∫
Sρ

F · ndσ

where Sρ is a sphere of (small) radius ρ with center at origin. On Sρ, n = 1
ρ
(xi+yj+zk)

and hence F · n = 1
ρ2 . Therefore,∫ ∫

Sρ

F · ndσ =
1

ρ2

∫ ∫
Sρ

dσ =
1

ρ2
4πρ2 = 4π.

7. div F = 2x + 2y + 2z. By the divergence theorem,∫ ∫
∂D

F.~ndσ =

∫ ∫ ∫
D

2(x + y + z)dV = 2

∫ ∫
x2+y2≤1

(

x+2∫
0

(x + y + z)dz)dxdy =
19π
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