Assignment 14 : Green's /Stoke's /Gauss's Theorems

- 1. (T) Use Green's Theorem to compute $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region $\{(x, y) : x, y \ge 0 \& x^2 + y^2 \le 1\}$.
- 2. (D) Show that the value of the line integral $\int xy^2 dx + (x^2y + 2x)dy$ around any square depends only on the size of the square and not on its location in the plane.
- 3. (D) Evaluate ∫_C xdy-ydx/x² along any simple closed curve in the xy plane not passing through the origin. Distinguish the cases where the region R enclosed by C:
 (a) includes the origin (b) does not include the origin.
- 4. (T) Use Stoke's Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.
- 5. (D) Verify the Stoke's Theorem where $\overrightarrow{F} = (y, z, x)$ and S is the part of the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2, oriented with \overrightarrow{n} pointing outward.
- 6. (T) Let $\overrightarrow{F} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|^3}$ where $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_{S} \overrightarrow{F} \cdot n \ d\sigma = 4\pi$.
- 7. (T) Let *D* be the domain inside the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2. If $\vec{F} = (x^2 + ye^z, y^2 + ze^x, z + xe^y)$, use the divergence theorem to evaluate $\iint_{\partial D} F \cdot \mathbf{n} \, d\sigma$.

- 1. $M = 2x^2 y^2$ and $N = x^2 + y^2$. By Green's Theorem $\int_C (2x^2 - y^2) dx + (x^2 + y^2) dy = \int_0^1 \int_0^{\sqrt{1 - x^2}} (N_x - M_y) dy dx$ $= \int_0^1 \int_0^{\sqrt{1 - x^2}} 2(x + y) dy dx = \frac{4}{3}.$
- 2. Let R be a square with the boundary C. Then by Green's theorem $\int_C xy^2 dx + (x^2y + 2x)dy = \iint_R 2dxdy = 2 \text{ Area}(R).$
- 3. (a) Let $M = -\frac{y}{x^2 + y^2}$ and $N = \frac{x}{x^2 + y^2}$. Suppose $(0, 0) \in R$. Since the function is not defined at (0, 0), choose C_{α} to be a circle of radius α containing (0, 0) and C lies in the interior of R. Let D be the region bounded by the simple closed curves C and C_{α} . In this region $N_x - M_y = 0$. By Green's Theorem, $\int_{C \cup C_{\alpha}} M dx + N dy = \iint_{D} (N_x - M_y) dx dy = 0$. Hence, $\int_{C} M dx + N dy = \int_{-C_{\alpha}} M dx + N dy = 2\pi$.
 - (b) For a simple closed curve C not containing (0,0), by Green's theorem, we have $\int_{C} M dx + N dy = 0.$
- 4. Let $F = -y^3 \vec{i} + x^3 \vec{j} z^3 \vec{k}$. By Stoke's Theorem, $\int_{\partial S} F dr = \int_{S} (curl F) \cdot \vec{n} d\sigma$.

Note that $\nabla \times F = 3(x^2 + y^2)\vec{k}$. Hence, $\int_{\partial S} F dr = \iint_D 3(x^2 + y^2) dx dy = \frac{3\pi}{2}$.

5. Let us first evaluate $\iint_{S} curl F \cdot nd\sigma$. Consider $S := r(\theta, z)$ where

$$r(\theta, z) = (\cos \theta, \sin \theta, z)$$
 where $0 \le \theta \le 2\pi$ and $0 \le z \le 2 + \cos \theta$

Note that

$$curl F = -i - j - k, \ n = \frac{r_{\theta} \times r_z}{\parallel r_{\theta} \times r_z \parallel} = \cos \theta i + \sin \theta j + 0k \text{ and } \sqrt{EG - F^2} = 1.$$

Therefore,

$$\iint_{S} curl F \cdot nd\sigma = \int_{-\pi}^{\pi} \int_{0}^{2+\cos\theta} (-\cos\theta - \sin\theta) dz d\theta = -\pi$$

Let C_1 and C_2 be the boundary curves of the surface S which are lying in the plane z = 0 and z = x + 2 respectively. Consider the parameterizations

$$C_1 := R(\theta) = \cos \theta i + \sin \theta j, \quad 0 \le \theta \le 2\pi$$

and

$$C_2 := R(\theta) = \cos \theta i + \sin \theta j + (2 + \cos \theta)k, \quad 0 \le \theta \le 2\pi.$$

Then

$$\oint_{C_1} F \cdot dR = \int_{0}^{2\pi} -\sin^2\theta d\theta = -\pi$$

and

$$\oint_{C_2} F \cdot dR = \int_{2\pi}^0 \dots = 0$$

(note that the direction of the integration over C_2 is in the clockwise direction(see the figure))).

6. Note that div F = 0. By divergence theorem

$$\iint_{S} F \cdot n d\sigma = \iint_{S_{\rho}} F \cdot n d\sigma$$

where S_{ρ} is a sphere of (small) radius ρ with center at origin. On S_{ρ} , $n = \frac{1}{\rho}(xi+yj+zk)$ and hence $F \cdot n = \frac{1}{\rho^2}$. Therefore,

$$\iint_{S_{\rho}} F \cdot n d\sigma = \frac{1}{\rho^2} \iint_{S_{\rho}} d\sigma = \frac{1}{\rho^2} 4\pi \rho^2 = 4\pi.$$

7. div F = 2x + 2y + 2z. By the divergence theorem,

$$\iint_{\partial D} F.\vec{n}d\sigma = \iint_{D} \iint_{D} 2(x+y+z)dV = 2\iint_{x^2+y^2 \le 1} (\iint_{0}^{x+2} (x+y+z)dz)dxdy = \frac{19\pi}{4}$$

