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Assignment 1 : Real Numbers, Sequences

1. (D) Find the supremum and infimum of the sets
{

m
m+n : m,n ∈ N

}
and

{
m

|m|+n : n ∈ N,m ∈ Z
}

.

2. (D) Let (xn) be a sequence of strictly positive real numbers such that lim
n−→∞

xn+1

xn
= `. Then

prove the following:

(a) if ` < 1 then lim
n−→∞

xn = 0,

(b) if ` > 1 then lim
n−→∞

xn = ∞

(c) if ` = 1 then give example of sequences to show that both conclusions can hold.

3. Investigate the convergence of the following sequences:

(a) (T) xn = 1
12+1

+ 1
22+2

+ · · ·+ 1
n2+n

,

(b) (D) xn = n2

n3+n+1
+ n2

n3+n+2
+ · · ·+ n2

n3+2n
,

(c) (T) xn = (n + 1)α − nα for some α ∈ (0, 1),

(d) (D) xn = ns

(1+p)n for some s > 0 and p > 0,

(e) (D) xn = 2n

n! .

(f) (T) xn = 1−2+3−4+···+(−1)n−1n
n ,

4. (T) Let a > 0 and x1 > 0. Define xn+1 = 1
2

(
xn + a

xn

)
for all n ∈ N. Prove that the sequence

(xn) converges to
√

a. These sequences are used in the numerical calculation of
√

a.

5. (D) Suppose that 0 < α < 1 and that (xn) is a sequence which satisfies one of the following
conditions

(a) |xn+1 − xn| ≤ αn, n = 1, 2, 3, . . .

(b) |xn+2 − xn+1| ≤ α|xn+1 − xn|, n = 1, 2, 3, . . . .

Then prove that (xn) satisfies the Cauchy criterion. Whenever you use this result, you have
to show that the number α that you get, satisfies 0 < α < 1. The condition |xn+2 − xn+1| ≤
|xn+1 − xn| does not guarantee the convergence of (xn). Give examples.

6. (T) Let x1 ∈ R and let xn+1 = 1
7

(
x3

n + 2
)

for n ∈ N. Show that (xn) converges for 0 < x1 < 1.
Also conclude that it converges to a root of x3−7x+2 lying between 0 and 1. Does the sequence
converge for any starting value of x1 > 1?
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Assignment 1- Solutions

1. First note that 0 < m
m+n

< 1. We guess that inf = 0 because 1
1+n

is in the
set and it approaches 0 when n is very large. Formally to show that 0 is the
infimum, we have to show that a number α > 0 cannot be a lower bound of the
given set. This is true because we can find an n such that 1

1+n
< α (using the

Archimedean property). Similarly we can show that sup = 1.

For the other set inf = -1 and sup = 1.

2. (a) Since ` < 1, we can find an r such that ` < r < 1. As lim
n−→∞

xn+1

xn
= `, there

exists n0 such that xn+1

xn
< r, for all n ≥ n0.

Hence, we have

0 < xn+n0 < rxn+n0−1 < r2xn+n0−2 < · · · < rnxn0 .

Since lim
n−→∞

rn = 0, (as 0 < r < 1), by the sandwich theorem, 0 ≤
lim

n−→∞
xn ≤ 0. Hence, xn → 0.

(b) Since ` > 1, we can find r ∈ R, such that 1 < r < `. Arguing along the
same lines as in (a), we get n0 ∈ N, such that xn+1 > rxn, ∀ n ≥ n0. Now,
xn+n0 > rnxn0 . Since r > 1, lim

n−→∞
rn = ∞ and therefore lim

n−→∞
xn = ∞.

(c) If (xn) = (n), then lim xn+1

xn
= 1, but lim

n−→∞
xn = ∞.

If xn = 1
n
, then lim xn+1

xn
= 1, but lim

n−→∞
xn = 0.

If xn = c + 1
n
, then lim xn+1

xn
= 1, but lim

n−→∞
xn = c.

3. (a) xn = 1− 1
2

+ 1
2
− 1

3
+ · · ·+ 1

n
− 1

n+1
= 1− 1

n+1
. Hence lim

n−→∞
xn = 1.

(b) n.n2

n3+2n
≤ xn ≤ n.n2

n3+n+1
. By sandwich theorem, xn → 1.

(c) xn = nα[(1 + 1
n
)
α − 1]. As, 0 < α < 1, (1 + 1

n
)
α

< (1 + 1
n
). Thus,

xn < nα[1 + 1
n
− 1] = nα−1 = 1

n1−α → 0.

(d) xn+1

xn
= (n+1)s(1+p)n

ns(1+p)n+1 = 1
1+p

(1 + 1
n
)
s → 1

p+1
< 1. Hence, by Problem 2(a),

lim
n−→∞

xn = 0.

(e) Here, x2n = −1
2

and x2n+1 = n+1
2n+1

→ 1
2
. These subsequences converge to

different limits and so, the sequence is not convergent.

(f) Consider xn+1

xn
and apply Problem 2(a). Here xn → 0.

4. Note that xn > 0 and xn+1 − xn = 1
2
(xn + a

xn
)− xn = 1

2
(a−x2

n

xn
).

Further, 2xn+1xn = x2
n + a ≥ 2

√
x2

na (by the A.M -G.M. inequality). Thus
xn+1 ≥

√
a. This implies that xn+1 − xn ≤ 0.

Therefore the sequence is decreasing and bounded below. Hence it converges.

Let lim
n−→∞

xn = `. ` = 1
2
( `2+a

`
) ⇒ ` =

√
a.
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5. (a) Let n > m.

Then |xn − xm| = |xn − xn−1 + xn−1 − xn−2 + · · ·+ xm+1 − xm|.
|xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|

≤ αn−1 + αn−2 + · · ·+ αm = αm[1 + α + · · ·+ αn−1+m]

≤ αm[1 + α + · · ·+]

= αm

1−α
→ 0 as m →∞.

Thus (xn) satisfies the Cauchy criterion.

(b) Note that |xn+2−xn+1| ≤ α|xn+1−xn| ≤ α2|xn−xn−1| ≤ · · · ≤ αn|x2−x1|.
For n > m,
|xn − xm| ≤ (αn−2 + αn−3 + · · ·+ αm−1)|x2 − x1|

≤ αm

1−α
|x2 − x1| → 0 as m →∞.

Thus (xn) satisfies the Cauchy criterion.

Examples:

(i) xn = n. Here, |xn+2 − xn+1| = 1 = |xn+1 − xn|.
(ii) xn =

√
n. Here,

|xn+2−xn+1| = |
√

n + 2−
√

n + 1| = 1√
n+2+

√
n+1

≤ 1√
n+1+

√
n

= |xn+1−xn|.

6. Note that

|xn+2−xn+1| = 1
7
|x3

n+1−x3
n| = 1

7
|x2

n+1 +xn+1xn +x2
n||xn+1−xn| ≤ 3

7
|xn+1−xn|.

By problem 5 (b), (xn) satisfies the Cauchy criterion, hence it converges.

It is clear that for x1 = 7, xn →∞.

gp
Text Box


		2011-01-25T12:53:33+0530
	MTH101R


		2011-01-25T12:54:12+0530
	MTH101R




