Assignment 1 : Real Numbers, Sequences

- 1. (D) Find the supremum and infimum of the sets $\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$ and $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$.
- 2. (D) Let (x_n) be a sequence of strictly positive real numbers such that $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell$. Then prove the following:
 - (a) if $\ell < 1$ then $\lim_{n \to \infty} x_n = 0$,
 - (b) if $\ell > 1$ then $\lim_{n \to \infty} x_n = \infty$
 - (c) if $\ell = 1$ then give example of sequences to show that both conclusions can hold.
- 3. Investigate the convergence of the following sequences:
 - (b) **(D)** $x_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + 2n}$
 - (d) **(D)** $x_n = \frac{n^s}{(1+p)^n}$ for some s > 0 and p > 0,
 - (e) **(D)** $x_n = \frac{2^n}{n!}$.
- 5. (D) Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions
 - (a) $|x_{n+1} x_n| \le \alpha^n$, $n = 1, 2, 3, \dots$
 - (b) $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|,$ $n = 1, 2, 3, \dots$

Then prove that (x_n) satisfies the Cauchy criterion. Whenever you use this result, you have to show that the number α that you get, satisfies $0 < \alpha < 1$. The condition $|x_{n+2} - x_{n+1}| \leq |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Assignment 1- Solutions

1. First note that $0 < \frac{m}{m+n} < 1$. We guess that $\inf = 0$ because $\frac{1}{1+n}$ is in the set and it approaches 0 when n is very large. Formally to show that 0 is the infimum, we have to show that a number $\alpha > 0$ cannot be a lower bound of the given set. This is true because we can find an n such that $\frac{1}{1+n} < \alpha$ (using the Archimedean property). Similarly we can show that $\sup = 1$.

For the other set $\inf = -1$ and $\sup = 1$.

2. (a) Since $\ell < 1$, we can find an r such that $\ell < r < 1$. As $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell$, there exists n_0 such that $\frac{x_{n+1}}{x_n} < r$, for all $n \ge n_0$. Hence, we have

$$0 < x_{n+n_0} < rx_{n+n_0-1} < r^2 x_{n+n_0-2} < \dots < r^n x_{n_0}.$$

Since $\lim_{n \to \infty} r^n = 0$, (as 0 < r < 1), by the sandwich theorem, $0 \leq \lim_{n \to \infty} x_n \leq 0$. Hence, $x_n \to 0$.

- (b) Since $\ell > 1$, we can find $r \in \mathbb{R}$, such that $1 < r < \ell$. Arguing along the same lines as in (a), we get $n_0 \in \mathbb{N}$, such that $x_{n+1} > rx_n$, $\forall n \ge n_0$. Now, $x_{n+n_0} > r^n x_{n_0}$. Since r > 1, $\lim_{n \to \infty} r^n = \infty$ and therefore $\lim_{n \to \infty} x_n = \infty$.
- (c) If $(x_n) = (n)$, then $\lim \frac{x_{n+1}}{x_n} = 1$, but $\lim_{n \to \infty} x_n = \infty$. If $x_n = \frac{1}{n}$, then $\lim \frac{x_{n+1}}{x_n} = 1$, but $\lim_{n \to \infty} x_n = 0$. If $x_n = c + \frac{1}{n}$, then $\lim \frac{x_{n+1}}{x_n} = 1$, but $\lim_{n \to \infty} x_n = c$.

3.

(b)
$$\frac{n \cdot n^2}{n^3 + 2n} \le x_n \le \frac{n \cdot n^2}{n^3 + n + 1}$$
. By sandwich theorem, $x_n \to 1$.

(d)
$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^s (1+p)^n}{n^s (1+p)^{n+1}} = \frac{1}{1+p} (1+\frac{1}{n})^s \to \frac{1}{p+1} < 1.$$
 Hence, by Problem 2(a),
 $\lim_{n \to \infty} x_n = 0.$

(e) Consider $\frac{x_{n+1}}{x_n}$ and apply Problem 2(a). Here $x_n \to 0$.

5. (a) Let n > m.

Then
$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + \dots + x_{m+1} - x_m|$$
.
 $|x_n - x_m| \le |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m|$
 $\le \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^m = \alpha^m [1 + \alpha + \dots + \alpha^{n-1+m}]$
 $\le \alpha^m [1 + \alpha + \dots +]$
 $= \frac{\alpha^m}{1 - \alpha} \to 0 \text{ as } m \to \infty.$

Thus (x_n) satisfies the Cauchy criterion.

(b) Note that
$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n| \le \alpha^2 |x_n - x_{n-1}| \le \dots \le \alpha^n |x_2 - x_1|$$
.
For $n > m$,
 $|x_n - x_m| \le (\alpha^{n-2} + \alpha^{n-3} + \dots + \alpha^{m-1})|x_2 - x_1|$
 $\le \frac{\alpha^m}{1 - \alpha} |x_2 - x_1| \to 0 \text{ as } m \to \infty.$
Thus (x_n) satisfies the Cauchy criterion.
Examples:
 $(i) \ x_n = n.$ Here, $|x_{n+2} - x_{n+1}| = 1 = |x_{n+1} - x_n|.$
 $(ii) \ x_n = \sqrt{n}.$ Here,

$$|x_{n+2} - x_{n+1}| = |\sqrt{n+2} - \sqrt{n+1}| = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} \le \frac{1}{\sqrt{n+1} + \sqrt{n}} = |x_{n+1} - x_n|.$$