## Assignment 1 : Real Numbers, Sequences

1. (D) Find the supremum and infimum of the sets $\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$ and $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$.
2. (D) Let $\left(x_{n}\right)$ be a sequence of strictly positive real numbers such that $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\ell$. Then prove the following:
(a) if $\ell<1$ then $\lim _{n \longrightarrow \infty} x_{n}=0$,
(b) if $\ell>1$ then $\lim _{n \longrightarrow} x_{n}=\infty$
(c) if $\ell=1$ then give example of sequences to show that both conclusions can hold.
3. Investigate the convergence of the following sequences:
(b) (D) $x_{n}=\frac{n^{2}}{n^{3}+n+1}+\frac{n^{2}}{n^{3}+n+2}+\cdots+\frac{n^{2}}{n^{3}+2 n}$,
(d) (D) $x_{n}=\frac{n^{s}}{(1+p)^{n}}$ for some $s>0$ and $p>0$,
(e) (D) $x_{n}=\frac{2^{n}}{n!}$.
4. (D) Suppose that $0<\alpha<1$ and that $\left(x_{n}\right)$ is a sequence which satisfies one of the following conditions
(a) $\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}$,

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& n=1,2,3, \ldots
\end{aligned}
$$

Then prove that $\left(x_{n}\right)$ satisfies the Cauchy criterion. Whenever you use this result, you have to show that the number $\alpha$ that you get, satisfies $0<\alpha<1$. The condition $\left|x_{n+2}-x_{n+1}\right| \leq$ $\left|x_{n+1}-x_{n}\right|$ does not guarantee the convergence of $\left(x_{n}\right)$. Give examples.

## Assignment 1- Solutions

1. First note that $0<\frac{m}{m+n}<1$. We guess that inf $=0$ because $\frac{1}{1+n}$ is in the set and it approaches 0 when $n$ is very large. Formally to show that 0 is the infimum, we have to show that a number $\alpha>0$ cannot be a lower bound of the given set. This is true because we can find an $n$ such that $\frac{1}{1+n}<\alpha$ (using the Archimedean property). Similarly we can show that sup $=1$.
For the other $\operatorname{set} \inf =-1$ and $\sup =1$.
2. (a) Since $\ell<1$, we can find an $r$ such that $\ell<r<1$. As $\lim _{n \longrightarrow \infty} \frac{x_{n+1}}{x_{n}}=\ell$, there exists $n_{0}$ such that $\frac{x_{n+1}}{x_{n}}<r$, for all $n \geq n_{0}$.
Hence, we have

$$
0<x_{n+n_{0}}<r x_{n+n_{0}-1}<r^{2} x_{n+n_{0}-2}<\cdots<r^{n} x_{n_{0}}
$$

Since $\lim _{n \longrightarrow \infty} r^{n}=0,($ as $0<r<1)$, by the sandwich theorem, $0 \leq$ $\lim _{n \longrightarrow \infty} x_{n} \leq 0$. Hence, $x_{n} \rightarrow 0$.
(b) Since $\ell>1$, we can find $r \in \mathbb{R}$, such that $1<r<\ell$. Arguing along the same lines as in (a), we get $n_{0} \in \mathbb{N}$, such that $x_{n+1}>r x_{n}, \forall n \geq n_{0}$. Now, $x_{n+n_{0}}>r^{n} x_{n_{0}}$. Since $r>1, \lim _{n \longrightarrow \infty} r^{n}=\infty$ and therefore $\lim _{n \longrightarrow \infty} x_{n}=\infty$.
(c) If $\left(x_{n}\right)=(n)$, then $\lim \frac{x_{n+1}}{x_{n}}=1$, but $\lim _{n \longrightarrow \infty} x_{n}=\infty$.

If $x_{n}=\frac{1}{n}$, then $\lim \frac{x_{n+1}}{x_{n}}=1$, but $\lim _{n \longrightarrow \infty} x_{n}=0$.
If $x_{n}=c+\frac{1}{n}$, then $\lim \frac{x_{n+1}}{x_{n}}=1$, but $\lim _{n \longrightarrow \infty} x_{n}=c$.
3.
(b) $\frac{n \cdot n^{2}}{n^{3}+2 n} \leq x_{n} \leq \frac{n \cdot n^{2}}{n^{3}+n+1}$. By sandwich theorem, $x_{n} \rightarrow 1$.
(d) $\frac{x_{n+1}}{x_{n}}=\frac{(n+1)^{s}(1+p)^{n}}{n^{s}(1+p)^{n+1}}=\frac{1}{1+p}\left(1+\frac{1}{n}\right)^{s} \rightarrow \frac{1}{p+1}<1$. Hence, by Problem 2(a), $\lim _{n \rightarrow \infty} x_{n}=0$.
(e) Consider $\frac{x_{n+1}}{x_{n}}$ and apply Problem 2(a). Here $x_{n} \rightarrow 0$.
5. (a) Let $n>m$.

$$
\begin{aligned}
& \text { Then }\left|x_{n}-x_{m}\right|=\left|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+\cdots+x_{m+1}-x_{m}\right| . \\
& \begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right| \\
& \leq \alpha^{n-1}+\alpha^{n-2}+\cdots+\alpha^{m}=\alpha^{m}\left[1+\alpha+\cdots+\alpha^{n-1+m}\right] \\
& \leq \alpha^{m}[1+\alpha+\cdots+] \\
& =\frac{\alpha^{m}}{1-\alpha} \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
\end{aligned}
$$

Thus ( $x_{n}$ ) satisfies the Cauchy criterion.
(b) Note that $\left|x_{n+2}-x_{n+1}\right| \leq \alpha\left|x_{n+1}-x_{n}\right| \leq \alpha^{2}\left|x_{n}-x_{n-1}\right| \leq \cdots \leq \alpha^{n}\left|x_{2}-x_{1}\right|$.

For $n>m$,

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left(\alpha^{n-2}+\alpha^{n-3}+\cdots+\alpha^{m-1}\right)\left|x_{2}-x_{1}\right| \\
& \leq \frac{\alpha^{m}}{1-\alpha}\left|x_{2}-x_{1}\right| \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

Thus ( $x_{n}$ ) satisfies the Cauchy criterion.
Examples:
(i) $x_{n}=n$. Here, $\left|x_{n+2}-x_{n+1}\right|=1=\left|x_{n+1}-x_{n}\right|$.
(ii) $x_{n}=\sqrt{n}$. Here,
$\left|x_{n+2}-x_{n+1}\right|=|\sqrt{n+2}-\sqrt{n+1}|=\frac{1}{\sqrt{n+2}+\sqrt{n+1}} \leq \frac{1}{\sqrt{n+1}+\sqrt{n}}=\left|x_{n+1}-x_{n}\right|$.

