Assignment 2 : Continuity, Intermediate Value Property

1. (D) Let \(f : \mathbb{R} \to \mathbb{R} \) be such that for every \(x, y \in \mathbb{R} \), \(|f(x) - f(y)| \leq |x - y| \). Show that \(f \) is continuous.

3. (D) Let \(f : (-1, 1) \to \mathbb{R} \) be a continuous function such that in every neighborhood of 0, there exists a point where \(f \) takes the value 0. Show that \(f(0) = 0 \).

5. (D) Let \(f : \mathbb{R} \to \mathbb{R} \) satisfy \(f(x + y) = f(x) + f(y) \) for all \(x, y \in \mathbb{R} \). If \(f \) is continuous at 0, show that \(f \) is continuous at every point \(c \in \mathbb{R} \).

8. (D) Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Show that the range \(\{ f(x) : x \in [a, b] \} \) is a closed and bounded interval.

10. (D) Show that a polynomial of odd degree has at least one real root.
Assignment 2 - Solutions

1. Let \(x_0 \in \mathbb{R} \) and \(x_n \to x_0 \). Since \(|f(x_n) - f(x_0)| \leq |x_n - x_0| \), \(f(x_n) \to f(x_0) \). Therefore \(f \) is continuous at \(x_0 \).

3. There exists \(x_n \in (-\frac{1}{n}, \frac{1}{n}) \) such that \(f(x_n) = 0 \). Since \(f \) is continuous at 0 and \(x_n \to 0 \), we have \(f(x_n) \to f(0) \). Therefore, \(f(0) = 0 \).

5. First note that \(f(0) = 0, f(-x) = -f(x) \) and \(f(x - y) = f(x) - f(y) \). Let \(x_0 \in \mathbb{R} \) and \(x_n \to x_0 \). Then \(f(x_n) - f(x_0) = f(x_n - x_0) \to f(0) = 0 \) as \(f \) is continuous at 0 and \(x_n - x_0 \to 0 \).

8. Let \(x_0, y_0 \in [a, b] \) such that \(f(x_0) = m = \inf f \) and \(f(y_0) = M = \sup f \). Suppose \(x_0 < y_0 \). By IMP, for every \(\alpha \in [m, M] \) there exists \(x \in [x_0, y_0] \) such that \(f(x) = \alpha \). Hence \(f([a, b]) = [m, M] \).

10. Let \(p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \), \(a_n \neq 0 \) and \(n \) be odd. Then \(p(x) = x^n (a_n + \frac{a_{n-1}}{x} + \cdots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n}) \). If \(a_n > 0 \), then \(p(x) \to \infty \) as \(x \to \infty \) and \(p(x) \to -\infty \) as \(x \to -\infty \). Thus by the intermediate value property, there exists \(x_0 \) such that \(p(x_0) = 0 \). Similar argument for \(a_n < 0 \).