Assignment 2 : Continuity, Intermediate Value Property

1. (D) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that for every $x, y \in \mathbb{R},|f(x)-f(y)| \leq|x-y|$. Show that f is continuous.
2. (D) Let $f:(-1,1) \rightarrow \mathbb{R}$ be a continuous function such that in every neighborhood of 0 , there exists a point where f takes the value 0 . Show that $f(0)=0$.
3. (D) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at 0 , show that f is continuous at every point $c \in \mathbb{R}$.
4. (D) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Show that the range $\{f(x)$: $x \in[a, b]\}$ is a closed and bounded interval.
5. (D) Show that a polynomial of odd degree has at least one real root.

Assignment 2 - Solutions

1. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. Since $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \leq\left|x_{n}-x_{0}\right|, f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. Therefore f is continuous at x_{0}.
2. There exists $x_{n} \in\left(-\frac{1}{n}, \frac{1}{n}\right)$ such that $f\left(x_{n}\right)=0$. Since f is continuous at 0 and $x_{n} \rightarrow 0$, we have $f\left(x_{n}\right) \rightarrow f(0)$. Therefore, $f(0)=0$.
3. First note that $f(0)=0, f(-x)=-f(x)$ and $f(x-y)=f(x)-f(y)$. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. Then $f\left(x_{n}\right)-f\left(x_{0}\right)=f\left(x_{n}-x_{0}\right) \rightarrow f(0)=0$ as f is continuous at 0 and $x_{n}-x_{0} \rightarrow 0$.
4. Let $x_{0}, y_{0} \in[a, b]$ such that $f\left(x_{0}\right)=m=\operatorname{inff}$ and $f\left(y_{0}\right)=M=\operatorname{supf}$. Suppose $x_{0}<y_{0}$. By IMP, for every $\alpha \in[m, M]$ there exists $x \in\left[x_{0}, y_{0}\right]$ such that $f(x)=\alpha$. Hence $f([a, b])=[m, M]$.
5. Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0$ and n be odd. Then $p(x)=x^{n}\left(a_{n}+\frac{a_{n-1}}{x}+\cdots+\frac{a_{1}}{x^{n-1}}+\frac{a_{0}}{x^{n}}\right)$. If $a_{n}>0$, then $p(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $p(x) \rightarrow-\infty$ as $x \rightarrow-\infty$. Thus by the intermediate value property, there exists x_{0} such that $p\left(x_{0}\right)=0$. Similar argument for $a_{n}<0$.
