Assignment 3 : Derivatives, Maxima and Minima, Rolle's Theorem

3. (D) Show that the function $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is differentiable at all $x \in \mathbb{R}$. Also show that the function $f^{\prime}(x)$ is not continuous at $x=0$. Thus, a function that is differentiable at every point of \mathbb{R} need not have a continuous derivative $f^{\prime}(x)$.
4. (D) Let $f(0)=0$ and $f^{\prime}(0)=1$. For a positive integerk, show that

$$
\lim _{x \rightarrow 0} \frac{1}{x}\left\{f(x)+f\left(\frac{x}{2}\right)+f\left(\frac{x}{3}\right)+\ldots+f\left(\frac{x}{k}\right)\right\}=1+\frac{1}{2}+\ldots+\frac{1}{k}
$$

7. (D) Prove that the equation $x^{13}+7 x^{3}-5=0$ has exactly one real root.
8. (D) Let f and g be functions, continuous on $[a, b]$, differentiable on (a, b) and let $f(a)=f(b)=0$. Prove that there is a point $c \in(a, b)$ such that $g^{\prime}(c) f(c)+f^{\prime}(c)=0$.

Assignment 3 - Solutions

3. Using the sandwich theorem, we can see $\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0$. Therefore, f is differentiable at 0 and $f^{\prime}(0)=0$.

Now,

$$
f^{\prime}(x)= \begin{cases}2 x \sin \frac{1}{x}-\cos \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Since $\lim _{h \rightarrow 0} \cos \frac{1}{h}$ does not exist, $f^{\prime}(x)$ is not continuous at 0 .
5. $\lim _{x \rightarrow 0} \frac{1}{x}\left(f(x)+f\left(\frac{x}{2}\right)+f\left(\frac{x}{3}\right)+\cdots+f\left(\frac{x}{k}\right)\right)=$
$\lim _{x \rightarrow 0}\left(\frac{f(x)-f(0)}{x}+\frac{1}{2} \frac{f\left(\frac{x}{2}\right)-f(0)}{\frac{x}{2}}+\cdots+\frac{1}{k} \frac{f\left(\frac{x}{k}\right)-f(0)}{\frac{x}{k}}\right)=1+\frac{1}{2}+\cdots+\frac{1}{k}$.
7. Let $f(x)=x^{13}+7 x^{3}-5$. Here, $f(x)<0 \forall x \leq 0, f(0)=-5$ and $f(1)=3$. By the intermediate value property, there exists $c \in(0,1)$, such that $f(c)=0$. So, f has at least one real root.

If f has more than one real roots, (from above) they must all be positive. But, $f^{\prime}(x)=x^{2}\left(13 x^{10}+21\right) \neq 0$ unless $x=0$. Since $f^{\prime}(x)$ has no positive root, f has atmost one real root.
10. Define $h(x)=f(x) e^{g(x)}$. Here, $h(x)$ is continuous in $[a, b]$ and differentiable in (a, b). Since $h(a)=h(b)=0$, by Rolle's theorem, $\exists c \in(a, b)$ such that $h^{\prime}(c)=0$.

Since $h^{\prime}(x)=\left[f^{\prime}(x)+g^{\prime}(x) f(x)\right] e^{g(x)}$ and $e^{\alpha} \neq 0$ for any $\alpha \in \mathbb{R}$, we see that $f^{\prime}(c)+$ $g^{\prime}(c) f(c)=0$.

