Assignment 4 : Mean Value Theorem, Taylor's Theorem, Curve Sketching

2. (D) Let $a>0$ and $f:[-a, a] \rightarrow \mathbb{R}$ be continuous. Suppose $f^{\prime}(x)$ exists and $f^{\prime}(x) \leq 1$ for all $x \in(-a, a)$. If $f(a)=a$ and $f(-a)=-a$, then show that $f(x)=x$ for every $x \in(-a, a)$.
3. Using Cauchy Mean Value Theorem, show that
(a) (D) $1-\frac{x^{2}}{2!}<\cos x$ for $x \neq 0$.
4. (D) Let f be continuous on $[a, b], a>0$ and differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that

$$
\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c) .
$$

9. (D) Using Taylor's theorem, for any $k \in \mathbb{N}$ and for all $x>0$, show that

$$
x-\frac{1}{2} x^{2}+\cdots+\frac{1}{2 k} x^{2 k}<\log (1+x)<x-\frac{1}{2} x^{2}+\cdots+\frac{1}{2 k+1} x^{2 k+1} .
$$

Assignment 4 - Solutions

2. Let $g(x)=f(x)-x$ on $[-a, a]$. Note that $g^{\prime}(x) \leq 0$ on ($-\mathrm{a}, \mathrm{a}$). Therefore, g is decreasing. Since $g(a)=g(-a)=0$, we have $g=0$.
This problem can also be solved by applying MVT for g on $[-a, x]$ and $[x, a]$.
3. (a) Apply CMVT to $f(x)=1-\cos x$ and $g(x)=\frac{x^{2}}{2}$. We get $\frac{1-\cos x}{x^{2} / 2}=\frac{\sin c}{c}<1$ for some c between 0 and x.
4. Apply CMVT to $\frac{f(x)}{x}$ and $\frac{1}{x}$.
5. By Taylor's theorem, $\exists c \in(0, x)$ s.t. $\log (1+x)=x-\frac{1}{2} x^{2}+\ldots+\frac{(-1)^{n-1}}{n} x^{n}+\frac{(-1)^{n}}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}$. Note that, for any $x>0, \frac{(-1)^{n}}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}>0$ if $n=2 k$ and <0 if $n=2 k+1$.
