Assignment 5 : Series, Power Series, Taylor Series

1. (D) Let $a_{n} \geq 0$. Then show that both the series $\sum_{n \geq 1} a_{n}$ and $\sum_{n \geq 1} \frac{a_{n}}{a_{n}+1}$ converge or diverge together.
2. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n \geq 1} a_{n}$ where a_{n} equals:
(a)(D) $1-n \sin \frac{1}{n}$
(b)(D) $\frac{1}{n} \log \left(1+\frac{1}{n}\right)$
3. (D) Let $\left\{a_{n}\right\}$ be a decreasing sequence, $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} a_{n}=0$. For each $n \in \mathbb{N}$, let $b_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$. Show that $\sum_{n>1}(-1)^{n} b_{n}$ converges.

Assignment 5- Solutions

(1) Suppose $\sum_{n \geq 1} a_{n}$ converges. Since $0 \leq \frac{a_{n}}{1+a_{n}} \leq a_{n}$ by comparison test $\sum_{n \geq 1} \frac{a_{n}}{1+a_{n}}$ converges. Suppose $\sum_{n \geq 1} \frac{a_{n}}{1+a_{n}}$ converges. By the necessary condition, $\frac{a_{n}}{1+a_{n}} \rightarrow 0$. Hence $a_{n} \rightarrow 0$ and therefore $1 \leq 1+a_{n}<2$ eventually. Hence $0 \leq \frac{1}{2} a_{n} \leq \frac{a_{n}}{1+a_{n}}$. Apply the comparison test.
(3) (a) Use Limit Comparison Test (LCT) with $\frac{1}{n^{2}}$. Since $1-n \sin \frac{1}{n} \leq \frac{1}{3!n^{2}}<\frac{1}{n^{2}}$, one can also use comparison test. (We will tell in the class, how to guess " b_{n} " and apply the LCT. So, the students might feel that the LCT is easier to apply compared to the comparison test).
(b) Use LCT or comparison test with $\frac{1}{n^{2}}$.
(5) $b_{n+1}-b_{n}=\frac{1}{n+1}\left(a_{1}+a_{2}+\ldots a_{n+1}\right)-\frac{1}{n}\left(a_{1}+\cdots+a_{n}\right)=\frac{a_{n+1}}{n+1}-\frac{\left(a_{1}+\cdots+a_{n}\right)}{n(n+1)}$. Since $\left(a_{n}\right)$ is decreasing, $a_{1}+\ldots a_{n} \geq n a_{n}$. Therefore, $b_{n+1}-b_{n} \leq \frac{a_{n+1}-a_{n}}{n+1} \leq 0$. Therefore, $\left(b_{n}\right)$ is decreasing.
We now need to show that $b_{n} \rightarrow 0$. For a given $\epsilon>0$, since $a_{n} \rightarrow 0$, there exists n_{0} such that $a_{n}<\frac{\epsilon}{2}, \forall, n \geq n_{0}$.
Therefore, $\left|\frac{a_{1}+\cdots+a_{n}}{n}\right|=\left|\frac{a_{1}+\cdots+a_{n_{0}}}{n}+\frac{a_{n_{0}+1}+\cdots+a_{n}}{n}\right| \leq\left|\frac{a_{1}+\cdots+a_{n_{0}}}{n}\right|+\frac{n-n_{0}}{n} \frac{\epsilon}{2}$. Choose $N \geq n_{0}$ large enough so that $\frac{a_{1}+\cdots+a_{n_{0}}}{N}<\frac{\epsilon}{2}$. Then, for all $n \geq N, \frac{a_{1}+\ldots a_{n}}{n}<\epsilon$. Hence, $b_{n} \rightarrow 0$. Use the Leibniz test for convergence.

