
Assignment 5 : Series, Power Series, Taylor Series

1. (D) Let an ≥ 0. Then show that both the series
∑
n≥1

an and
∑
n≥1

an

an+1
converge

or diverge together.

2. (T) Prove that
∑

(an − an+1) converges if and only if the sequence an converges.
Use this to decide the convergence/divergence of the following series:

(1)
∑∞

n=1
4

(4n−3)(4n+1)
(2)

∑∞
n=1

2n+1
n2(n+1)2

3. In each of the following cases, discuss the convergence/divergence of the series∑
n≥1 an where an equals:

(a)(D) 1−n sin 1
n

(b)(D) 1
n

log(1+ 1
n
) (c)(T) 1−cos 1

n

(d)(T) 2−n−(−1)n
(e)(T)

(
1 + 1

n

)n(n+1)
(f)(T) n ln n

2n

4. (T) Let
∑
n≥1

an and
∑
n≥1

bn be series of positive terms satisfying an+1

an
≤ bn+1

bn
for

all n ≥ N. Show that if
∑
n≥1

bn converges then
∑
n≥1

an also converges. Test the

series
∑
n≥1

nn−2

enn!
for convergence.

5. (D) Let {an} be a decreasing sequence, an ≥ 0 and lim
n−→∞

an = 0. For each

n ∈ N, let bn = a1+a2+···+an

n
. Show that

∑
n≥1

(−1)nbn converges.

6. (T) Determine the values of x for which the series
∑
n≥1

(x−1)2n

n23n converges.

7. (T) Show that cos x =
∑∞

n=0
(−1)n

(2n)!
x2n, x ∈ R and ex =

∑∞
n=0

1
n!

xn, x ∈ R.
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Assignment 5- Solutions

(1) Suppose
∑
n≥1

an converges. Since 0 ≤ an

1+an
≤ an by comparison test

∑
n≥1

an

1+an
converges.

Suppose
∑
n≥1

an

1+an
converges. By the necessary condition, an

1+an
→ 0. Hence an → 0 and

therefore 1 ≤ 1 + an < 2 eventually. Hence 0 ≤ 1
2
an ≤ an

1+an
. Apply the comparison

test.

(2) Note that the sequence of partial sums of the series
∑

(an − an+1) is (a1 − an).

(3) (a) Use Limit Comparison Test (LCT) with 1
n2 . Since 1−n sin 1

n
≤ 1

3!n2 < 1
n2 , one can

also use comparison test. (We will tell in the class, how to guess ”bn” and apply
the LCT. So, the students might feel that the LCT is easier to apply compared to
the comparison test).

(b) Use LCT or comparison test with 1
n2 .

(c) Use LCT with 1
n2 or comparison test because 1− cos 1

n
≤ 1

2!n2 < 1
n2 or 1− cos 1

n
=

2sin2 1
2n

< 1
2n2 .

(d) Use root test to show that a
1
n
n converges to 1

2
and therefore the series converges.

(e) Use root test to show that a
1
n
n converges to e > 1 and hence the series is divergent.

(f) By ratio test, we get an+1

an
→ 1

2
and therefore the series converges.

(4) Clearly, cn+1 = an+1

bn+1
≤ an

bn
= cn, ∀ n ≥ N . Thus 0 < cn = an

bn
< aN

bN
, ∀n > N . Use the

comparison test.

For the other part, note that an+1

an
=

(1+ 1
n

)n−2

e
=

(1+ 1
n

)n

(1+ 1
n

)2e
< e

(1+ 1
n

)2e
=

1
(1+n)2

1
(n)2

.

(5) bn+1 − bn = 1
n+1

(a1 + a2 + . . . an+1) − 1
n
(a1 + · · · + an) = an+1

n+1
− (a1+···+an)

n(n+1)
. Since (an)

is decreasing, a1 + . . . an ≥ nan. Therefore, bn+1− bn ≤ an+1−an

n+1
≤ 0. Therefore, (bn) is

decreasing.

We now need to show that bn → 0. For a given ε > 0, since an → 0, there exists n0

such that an < ε
2
, ∀, n ≥ n0.

Therefore, |a1+···+an

n
| = |a1+···+an0

n
+

an0+1+···+an

n
| ≤| a1+···+an0

n
| +n−n0

n
ε
2
. Choose N ≥ n0

large enough so that
a1+···+an0

N
< ε

2
. Then, for all n ≥ N , a1+...an

n
< ε. Hence, bn → 0.

Use the Leibniz test for convergence.

(6) By root test the series converges for | x−1 |<
√

3. If x−1 = ±
√

3 the series converges.
Therefore the series converges for | x− 1 | ≤

√
3.

(7) The proof for sin x is similar to the proof of sin x =
∑∞

n=0
(−1)n

(2n+1)!
x2n+1, x ∈ R which

is given in the notes. Proof for ex is given in the notes.
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