Assignment 6: Integration

2. (D) Let $f:[0,1] \longrightarrow \mathbb{R}$ such that $f(x)=\left\{\begin{array}{rr}\frac{1}{n} & \text { if } x=\frac{1}{n} \\ 0 & \text { otherwise }\end{array}\right.$. Show that f is integrable on $[0,1]$ and $\int_{0}^{1} f(x) d x=0$.
3. (D) Let $g_{n}(y)=\left\{\begin{array}{ll}\frac{n y^{n-1}}{1+y} & \text { if } 0 \leq y<1 \\ 0 & \text { if } y=1\end{array}\right.$. Then prove that $\lim _{n \longrightarrow \infty} \int_{0}^{1} g_{n}(y) d y=\frac{1}{2}$ whereas
$\int_{0}^{1} \lim _{n \longrightarrow \infty} g_{n}(y) d y=0$.

Assignment 6 - Solutions

2. The solution is given in the lecture notes.
3. From the ratio test for the sequence we can show that $\lim _{n \longrightarrow \infty} \frac{n y^{n-1}}{1+y}=0$, for each $0<$ $y<1$. Therefore $\int_{0}^{1} \lim _{n \longrightarrow \infty} g_{n}(y) d y=0$.
For the other part, use integration by parts to see that $\int_{0}^{1} \frac{n y^{n-1}}{1+y} d y=\frac{1}{2}+\int_{0}^{1} \frac{y^{n}}{(1+y)^{2}} d y$.
Note that $\int_{0}^{1} \frac{y^{n}}{(1+y)^{2}} d y \leq \int_{0}^{1} y^{n}=\frac{1}{n+1} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, $\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(y) d y=\frac{1}{2}$.
