Assignment 7: Improper Integrals

- 2. (D) In each case, determine the values of p for which the following improper integrals converge
 - (a) $\int_{0}^{\infty} \frac{1-e^{-x}}{x^{p}} dx$ (b) $\int_{0}^{\infty} \frac{t^{p-1}}{1+t} dt$.

5. (D) Prove that improper integral $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges conditionally for 0 and absolutely for <math>p > 1.

2. (a)
$$\int_{0}^{\infty} \frac{1-e^{-x}}{x^{p}} dx = \int_{0}^{1} \frac{1-e^{-x}}{x^{p}} dx + \int_{1}^{\infty} \frac{1-e^{-x}}{x^{p}} dx = I_{1} + I_{2}.$$

Now one has to see how the function $\frac{1-e^{-x}}{x^p}$ behaves in the respective intervals and apply the LCT.

Since $\lim_{x\to 0} \frac{1-e^{-x}}{x} = 1$, by LCT with $\frac{1}{x^{p-1}}$, we see that I_1 is convergent iff p-1 < 1, *i.e.*, p < 2. Similarly, I_2 is convergent (by applying LCT with $\frac{1}{x^p}$) iff p > 1. Therefore $\int_{0}^{\infty} \frac{1-e^{-x}}{x^p} dx$ converges iff 1 .

(b) $\int_0^\infty \frac{t^{p-1}}{1+t} dt = \int_0^1 \frac{t^{p-1}}{1+t} dt + \int_1^\infty \frac{t^{p-1}}{1+t} dt = I_1 + I_2$. For I_1 , use LCT with t^{p-1} . We see that the integral converges iff p > 0. Similarly, for I_2 , Use LCT with t^{p-2} . The integral converges iff p < 1. Therefore, $\int_0^\infty \frac{t^{p-1}}{1+t} dt$ converges iff 0 .

5. By Dirichlet's Test, $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges for all p > 0. $\int_{1}^{\infty} \frac{|\sin x|}{x^{p}} dx \leq \int_{1}^{\infty} \frac{dx}{x^{p}}$. Therefore, the function converges absolutely for p > 1. Now, let 0 . $Since, <math>|\sin x| \geq \sin^{2} x$, we see that $|\frac{\sin x}{x^{p}}| \geq \frac{\sin^{2} x}{x^{p}} = \frac{1-\cos 2x}{2x^{p}}$. By Dirichlet's Test, $\int_{1}^{\infty} \frac{\cos 2x}{2x^{p}} dx$ converges $\forall p > 0$. But $\int_{1}^{\infty} \frac{1}{2x^{p}}$ diverges for $p \leq 1$. Hence, $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges conditionally for 0 and absolutely for <math>p > 1.