## Assignment 8: Applications of Integration, Pappus Theorem

- 1. (D) Find the area of the region in the first quadrant bounded on the left by the Y-axis, below by the curve  $x = 2\sqrt{y}$ , above left by the curve  $x = (y 1)^2$ , and above right by the line x = 3 y.
- 2. (D) Sketch the graph of  $r = 1 + \sin \theta$ . Find the area of the region that is inside the circle  $r = 3 \sin \theta$  and also inside  $r = 1 + \sin \theta$ .

- 5. (D) The region bounded by the curve  $y = x^2 + 1$  and the line y = -x + 3 is revolved about the X-axis to generate a solid. Find the volume of the solid.
- 6. (D) The region in the first quadrant bounded by the parabola  $y = x^2$ , the Y-axis and the line y = 1 is revolved about the line x = 2 to generate a solid. Find the volume of the solid.
- 8. (D) Find the area of the surface generated by revolving the curve  $y = x^3$ ,  $0 \le x \le 1/2$ , about the X-axis.
- 10. (D) A regular hexagon is inscribed in the circle  $x^2 + (y-2)^2 = 1$  and is rotated about the X-axis. Find the volume and the surface area of the solid so formed.

## Assignment 8 - Solutions

1. Area= 
$$\int_{0}^{1} (1 + \sqrt{x} - \frac{x^2}{4}) dx + \int_{1}^{2} (3 - x - \frac{x^2}{4}) dx = \frac{5}{2}.$$
  
2. Area=  $2.\frac{1}{2} [\int_{0}^{\frac{\pi}{6}} (3\sin\theta)^2 d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 + \sin\theta)^2 d\theta] = \frac{5\pi}{4}.$ 

- 5. Use the washer method: The outer radius ,  $r_2(x) = -x + 3$  and the inner radius  $r_1(x) = x^2 + 1$ .  $V = \int_{-2}^{1} \pi ((-x+3)^2 - (x^2+1)^2) dx = 117 \frac{\pi}{3}$ .
- 6. By the shell method: Observe that shell radius =2 x and the shell height  $=1 x^2$ . The volume  $V = \int_{0}^{1} 2\pi (2 - x)(1 - x^2) dx = \frac{13\pi}{6}$ .

The volume can also be computed by the washer method.

8. 
$$S = \int_{0}^{\frac{1}{2}} 2\pi y ds.$$
  
Since  $y = x^{3}$ ,  $ds = \sqrt{dx^{2} + dy^{2}} \Rightarrow ds = \sqrt{1 + 9x^{4}} dx$ . Therefore  $S = \frac{61\pi}{1728}$ .

10. From the figure, the area of the hexagon is  $\frac{3\sqrt{3}}{2}$  and the perimeter is 6.  $\rho = 2$  since the centroid is (0, 2).

By Pappus theorem,  $V = 6\sqrt{3}\pi$  and  $S = 24\pi$ .





A

