Assignment 8: Applications of Integration, Pappus Theorem

1. (D) Find the area of the region in the first quadrant bounded on the left by the \(Y \)-axis, below by the curve \(x = 2\sqrt{y} \), above left by the curve \(x = (y - 1)^2 \), and above right by the line \(x = 3 - y \).

2. (D) Sketch the graph of \(r = 1 + \sin \theta \). Find the area of the region that is inside the circle \(r = 3 \sin \theta \) and also inside \(r = 1 + \sin \theta \).

5. (D) The region bounded by the curve \(y = x^2 + 1 \) and the line \(y = -x + 3 \) is revolved about the \(X \)-axis to generate a solid. Find the volume of the solid.

6. (D) The region in the first quadrant bounded by the parabola \(y = x^2 \), the \(Y \)-axis and the line \(y = 1 \) is revolved about the line \(x = 2 \) to generate a solid. Find the volume of the solid.

8. (D) Find the area of the surface generated by revolving the curve \(y = x^3 \), \(0 \leq x \leq 1/2 \), about the \(X \)-axis.

10. (D) A regular hexagon is inscribed in the circle \(x^2 + (y - 2)^2 = 1 \) and is rotated about the \(X \)-axis. Find the volume and the surface area of the solid so formed.
1. Area= \[\int_0^1 (1 + \sqrt{x} - \frac{x^2}{4})dx + \int_1^2 (3 - x - \frac{x^2}{4})dx = \frac{5}{2}. \]

2. Area= \[2 \cdot \frac{1}{2} \left[\int_0^{\frac{\pi}{6}} (3 \sin \theta)^2 d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 + \sin \theta)^2 d\theta \right] = \frac{5\pi}{4}. \]

3. Let \(r = \cos 2\theta \). Between \(\theta = 0 \) to \(\theta = \frac{\pi}{4} \), we plot \((r, \theta)\) (in polar coordinate) i.e., for each \(\theta \) we find \(r \). The graph lies in the first quadrant for these \(\theta \)'s.

Note that, since \(r \) is negative for \(\theta = \frac{\pi}{4} \) to \(\theta = \frac{\pi}{2} \), if we sketch the graph for these \(\theta \)'s, the graph appears in the third quadrant.

Whenever \((r, \theta) \in G\), the graph, we see that \((r, -\theta), (r, \pi - \theta), (r, \pi + \theta) \in G\).

Therefore, there is symmetry about the x-axis, y-axis and the origin.

Let \(r = \sin 2\theta \). Again, we see that there is symmetry about the x-axis, y-axis and the origin.

4. Each cross section is a rectangle of area \(A(x) = x^2 \sqrt{9 - x^2} \). Therefore the volume \(V = \int_0^2 x \sqrt{9 - x^2} dx = \frac{18}{7} \).

5. Use the washer method: The outer radius , \(r_2(x) = -x + 3 \) and the inner radius \(r_1(x) = x^2 + 1 \).

\[V = \int_{-2}^1 \pi [((-x + 3)^2 - (x^2 + 1)^2)] dx = 117\pi \frac{7}{5}. \]

6. By the shell method: Observe that shell radius =2 − x and the shell height =1 − x^2.

The volume \(V = \int_0^1 2\pi(2 - x)(1 - x^2)dx = \frac{13\pi}{6} \).

The volume can also be computed by the washer method.

8. \(S = \int_0^{\frac{\pi}{2}} 2\pi y ds \).

Since \(y = x^3 \), \(ds = \sqrt{dx^2 + dy^2} \Rightarrow ds = \sqrt{1 + 9x^2}dx \). Therefore \(S = \frac{61\pi}{1728} \).
10. From the figure, the area of the hexagon is $\frac{3\sqrt{3}}{2}$ and the perimeter is 6. $\rho = 2$ since the centroid is (0, 2).

By Pappus theorem, $V = 6\sqrt{3}\pi$ and $S = 24\pi$.

Distance of centroid from the line $y = -mx$ is $\rho = mr + 2r\pi\sqrt{1 + m^2}$.

Again, by Pappus Theorem, we see that $A = 2\pi\rho r$.

$dA/dm = 0 \Rightarrow m = \frac{\pi}{2}$. Easy to see that A has a maxima at $\frac{\pi}{2}$.