Assignment 8: Applications of Integration, Pappus Theorem

1. (D) Find the area of the region in the first quadrant bounded on the left by the Y-axis, below by the curve $x=2 \sqrt{y}$, above left by the curve $x=(y-1)^{2}$, and above right by the line $x=3-y$.
2. (D) Sketch the graph of $r=1+\sin \theta$. Find the area of the region that is inside the circle $r=3 \sin \theta$ and also inside $r=1+\sin \theta$.
3. (D) The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about the X-axis to generate a solid. Find the volume of the solid.
4. (D) The region in the first quadrant bounded by the parabola $y=x^{2}$, the Y-axis and the line $y=1$ is revolved about the line $x=2$ to generate a solid. Find the volume of the solid.
5. (D) Find the area of the surface generated by revolving the curve $y=x^{3}, 0 \leq$ $x \leq 1 / 2$, about the X-axis.
6. (D) A regular hexagon is inscribed in the circle $x^{2}+(y-2)^{2}=1$ and is rotated about the X-axis. Find the volume and the surface area of the solid so formed.

Assignment 8 - Solutions

1. Area $=\int_{0}^{1}\left(1+\sqrt{x}-\frac{x^{2}}{4}\right) d x+\int_{1}^{2}\left(3-x-\frac{x^{2}}{4}\right) d x=\frac{5}{2}$.
2. Area $=2 \cdot \frac{1}{2}\left[\int_{0}^{\frac{\pi}{6}}(3 \sin \theta)^{2} d \theta+\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(1+\sin \theta)^{2} d \theta\right]=\frac{5 \pi}{4}$.
3. Use the washer method: The outer radius, $r_{2}(x)=-x+3$ and the inner radius $r_{1}(x)=x^{2}+1$.
$V=\int_{-2}^{1} \pi\left((-x+3)^{2}-\left(x^{2}+1\right)^{2}\right) d x=117 \frac{\pi}{3}$.
4. By the shell method: Observe that shell radius $=2-x$ and the shell height $=1-x^{2}$.
The volume $V=\int_{0}^{1} 2 \pi(2-x)\left(1-x^{2}\right) d x=\frac{13 \pi}{6}$.
The volume can also be computed by the washer method.
5. $S=\int_{0}^{\frac{1}{2}} 2 \pi y d s$.

Since $y=x^{3}, d s=\sqrt{d x^{2}+d y^{2}} \Rightarrow d s=\sqrt{1+9 x^{4}} d x$. Therefore $S=\frac{61 \pi}{1728}$.
10. From the figure, the area of the hexagon is $\frac{3 \sqrt{3}}{2}$ and the perimeter is 6 . $\rho=2$ since the centroid is $(0,2)$.
By Pappus theorem, $V=6 \sqrt{3} \pi$ and $S=24 \pi$.

