Assignment 9: Vectors, Curves, Surfaces, Vector Functions

2. (D) Determine the equation of the cylinder generated by a line through the curve $(x-2)^{2}+y^{2}=4, z=0$ moving parallel to the vector $\vec{i}+\vec{j}+\vec{k}$.
3. (D) If a plane curve has the Cartesian equation $y=f(x)$ where f is a twice differentiable function, then show that the curvature at the point $(x, f(x))$ is $\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+f^{\prime}(x)^{2}\right]^{3 / 2}}$.
4. (D) For the curve $c(t)=t \vec{i}+t^{2} \vec{j}+\frac{2}{3} t^{3} \vec{k}$ find the equations of the tangent, principal normal and binormal. Also calculate the curvature of the curve.

Assignment 9 - Solutions

2. Any point on the curve is of the form $\left(x_{0}, y_{0}, 0\right)$. The equation of a line passing through $\left(x_{0}, y_{0}, 0\right)$ and parallel to $(1,1,1)$ is
$\frac{x-x_{0}}{1}=\frac{y-y_{0}}{1}=\frac{z-z_{0}}{1}$. We get $x_{0}=x-z$ and $y_{0}=y-z$.
Since $\left(x_{0}, y_{0}, 0\right)$ lies on the curve, we get the equation of the cylinder to be $(x-z-2)^{2}+(y-z)^{2}=4$.
3. The equation of the plane curve is $R(t)=x i+f(x) j$. Use the formula $\kappa=\frac{\|v \times a\|}{\|v\|^{3}}$. (The detailed solution is given in the notes)
4. Note that $c^{\prime}(t)=i+2 t j+2 t^{2}$. Use the formulae $T(t)=\frac{c^{\prime}(t)}{\left\|c^{\prime}(t)\right\|}, N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|}$ and $B(t)=T(t) \times N(t)$.
For the equations of tangent, principle normal and binormal at a point on the curve, we have to fix a point on the curve.
The solution is given in the notes.
