Assignment 1 : Real Numbers, Sequences

- 1. (D) Find the supremum and infimum of the sets $\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$ and $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$.
- 2. (D) Let (x_n) be a sequence of strictly positive real numbers such that $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell$. Then prove the following:
 - (a) if $\ell < 1$ then $\lim_{n \to \infty} x_n = 0$,
 - (b) if $\ell > 1$ then $\lim_{n \to \infty} x_n = \infty$
 - (c) if $\ell = 1$ then give example of sequences to show that both conclusions can hold.
- 3. Investigate the convergence of the following sequences:
 - (a) **(T)** $x_n = \frac{1}{1^2+1} + \frac{1}{2^2+2} + \dots + \frac{1}{n^2+n},$ (b) **(D)** $x_n = \frac{n^2}{n^3+n+1} + \frac{n^2}{n^3+n+2} + \dots + \frac{n^2}{n^3+2n},$ (c) **(T)** $x_n = (n+1)^{\alpha} - n^{\alpha}$ for some $\alpha \in (0,1),$ (d) **(D)** $x_n = \frac{n^s}{(1+p)^n}$ for some s > 0 and p > 0,(e) **(D)** $x_n = \frac{2^n}{n!}.$ (f) **(T)** $x_n = \frac{1-2+3-4+\dots+(-1)^{n-1}n}{n},$
- 4. (T) Let a > 0 and $x_1 > 0$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for all $n \in \mathbb{N}$. Prove that the sequence (x_n) converges to \sqrt{a} . These sequences are used in the numerical calculation of \sqrt{a} .
- 5. (D) Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions
 - (a) $|x_{n+1} x_n| \le \alpha^n$, $n = 1, 2, 3, \dots$

(b)
$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n|,$$
 $n = 1, 2, 3, ...$

Then prove that (x_n) satisfies the Cauchy criterion. Whenever you use this result, you have to show that the number α that you get, satisfies $0 < \alpha < 1$. The condition $|x_{n+2} - x_{n+1}| \leq |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) . Give examples.

6. (T) Let $x_1 \in \mathbb{R}$ and let $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$ for $n \in \mathbb{N}$. Show that (x_n) converges for $0 < x_1 < 1$. Also conclude that it converges to a root of $x^3 - 7x + 2$ lying between 0 and 1. Does the sequence converge for any starting value of $x_1 > 1$?