Assignment 1: Real Numbers, Sequences

1. (D) Find the supremum and infimum of the $\operatorname{sets}\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$ and $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$.
2. (D) Let $\left(x_{n}\right)$ be a sequence of strictly positive real numbers such that $\lim _{n \longrightarrow \infty} \frac{x_{n+1}}{x_{n}}=$ ℓ. Then prove the following:
(a) if $\ell<1$ then $\lim _{n \longrightarrow \infty} x_{n}=0$,
(b) if $\ell>1$ then $\lim _{n \longrightarrow \infty} x_{n}=\infty$
(c) if $\ell=1$ then give example of sequences to show that both conclusions can hold.
3. Investigate the convergence of the following sequences:
(a) (T) $x_{n}=\frac{1}{1^{2}+1}+\frac{1}{2^{2}+2}+\cdots+\frac{1}{n^{2}+n}$,
(b) (D) $x_{n}=\frac{n^{2}}{n^{3}+n+1}+\frac{n^{2}}{n^{3}+n+2}+\cdots+\frac{n^{2}}{n^{3}+2 n}$,
(c) $(\mathbf{T}) x_{n}=(n+1)^{\alpha}-n^{\alpha}$ for some $\alpha \in(0,1)$,
(d) (D) $x_{n}=\frac{n^{s}}{(1+p)^{n}}$ for some $s>0$ and $p>0$,
(e) (D) $x_{n}=\frac{2^{n}}{n!}$.
(f) $(\mathbf{T}) x_{n}=\frac{1-2+3-4+\cdots+(-1)^{n-1} n}{n}$,
4. (T) Let $a>0$ and $x_{1}>0$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ for all $n \in \mathbb{N}$. Prove that the sequence $\left(x_{n}\right)$ converges to \sqrt{a}. These sequences are used in the numerical calculation of \sqrt{a}.
5. (D) Suppose that $0<\alpha<1$ and that $\left(x_{n}\right)$ is a sequence which satisfies one of the following conditions
(a) $\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}$, $n=1,2,3, \ldots$
(b) $\left|x_{n+2}-x_{n+1}\right| \leq \alpha\left|x_{n+1}-x_{n}\right|$,
$n=1,2,3, \ldots$
Then prove that $\left(x_{n}\right)$ satisfies the Cauchy criterion. Whenever you use this result, you have to show that the number α that you get, satisfies $0<\alpha<1$. The condition $\left|x_{n+2}-x_{n+1}\right| \leq\left|x_{n+1}-x_{n}\right|$ does not guarantee the convergence of $\left(x_{n}\right)$. Give examples.
6. (T) Let $x_{1} \in \mathbb{R}$ and let $x_{n+1}=\frac{1}{7}\left(x_{n}^{3}+2\right)$ for $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ converges for $0<x_{1}<1$. Also conclude that it converges to a root of $x^{3}-7 x+2$ lying between 0 and 1. Does the sequence converge for any starting value of $x_{1}>1$?
