Assignment 10: Functions of several variables (Continuity and Differentiabilty)

1. (D) Examine the following functions for continuity at the point $(0,0)$, where $f(0,0)=0$ and $f(x, y)$ for $(x, y) \neq(0,0)$ is given by
i) $|x|+|y|$
i) $\frac{x y}{\sqrt{x^{2}+y^{2}}}$
ii) $\frac{x y}{x^{2}+y^{2}}$
iii) $\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$
iv) $\frac{x^{2} y}{x^{4}+y^{2}}$.
2. (T) Identify the points, if any, where the following functions fail to be continuous:
(i) $f(x, y)=\left\{\begin{array}{ll}x y & \text { if } x y \geq 0 \\ -x y & \text { if } x y<0\end{array} \quad\right.$ (ii) $f(x, y)= \begin{cases}x y & \text { if } x y \text { is rationnal } \\ -x y & \text { if } x y \text { is irrational. }\end{cases}$
3. (T) Consider the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that the function satisfy the following:
(a) The iterated limits $\lim _{x \rightarrow 0}\left[\lim _{y \longrightarrow 0} f(x, y)\right]$ and $\lim _{y \longrightarrow 0}\left[\lim _{x \longrightarrow 0} f(x, y)\right]$ exist and equals 0 ;
(b) $\lim _{(x, y) \longrightarrow(0,0)} f(x, y)$ does not exist;
(c) $f(x, y)$ is not continuous at $(0,0)$;
(d) the partial derivatives exist at $(0,0)$.
4. (D) Let $f(x, y)$ be defined in $S=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, c<y<d\right\}$. Suppose that the partial derivatives of f exist and are bounded in S. Then show that f is continuous in S.
5. (D) Let $f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and 0 , otherwise. Prove that
(a) $f_{x}(0, y)=-y$ and $f_{y}(x, 0)=x$ for all x and y;
(b) $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$ and
(c) $f(x, y)$ is differentiable at $(0,0)$.
6. (T) Let $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and 0 , otherwise. Show that f is differentiable at every point of \mathbb{R}^{2} but the partial derivatives are not continuous at $(0,0)$.
7. (T) Suppose f is a function with $f_{x}(x, y)=f_{y}(x, y)=0$ for all (x, y). Then show that $f(x, y)=c$, a constant.

