Assignment 10: Functions of several variables (Continuity and Differentiability)

- 1. (D) Examine the following functions for continuity at the point (0,0), where f(0,0) = 0 and f(x,y) for $(x,y) \neq (0,0)$ is given by
 - i) |x| + |y| i) $\frac{xy}{\sqrt{x^2 + y^2}}$ ii) $\frac{xy}{x^2 + y^2}$ iii) $\frac{x^4 y^2}{x^4 + y^2}$ iv) $\frac{x^2y}{x^4 + y^2}$.
- 2. (T) Identify the points, if any, where the following functions fail to be continuous:

(i)
$$f(x,y) = \begin{cases} xy & \text{if } xy \ge 0\\ -xy & \text{if } xy < 0 \end{cases}$$
 (ii) $f(x,y) = \begin{cases} xy & \text{if } xy \text{ is rationnal}\\ -xy & \text{if } xy \text{ is irrational.} \end{cases}$

3. (T) Consider the function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2y^2 + (x-y)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if}(x,y) = (0,0) \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x \to 0} \left[\lim_{y \to 0} f(x, y) \right]$ and $\lim_{y \to 0} \left[\lim_{x \to 0} f(x, y) \right]$ exist and equals 0;
- (b) $\lim_{(x,y)\longrightarrow(0,0)} f(x,y)$ does not exist;
- (c) f(x, y) is not continuous at (0, 0);
- (d) the partial derivatives exist at (0,0).
- 4. (D) Let f(x,y) be defined in $S = \{(x,y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$. Suppose that the partial derivatives of f exist and are bounded in S. Then show that f is continuous in S.
- 5. (D) Let $f(x,y) = xy \frac{x^2 y^2}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and 0, otherwise. Prove that
 - (a) $f_x(0,y) = -y$ and $f_y(x,0) = x$ for all x and y;
 - (b) $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$ and (c) f(x,y) is differentiable at (0,0).
- 6. (T) Let $f(x, y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$ and 0, otherwise. Show that f is differentiable at every point of \mathbb{R}^2 but the partial derivatives are not continuous at (0, 0).
- 7. (T) Suppose f is a function with $f_x(x,y) = f_y(x,y) = 0$ for all (x,y). Then show that f(x,y) = c, a constant.