Assignment 11: Directional derivatives, Maxima, Minima, Lagrange Multipliers

1. (D) Let $f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}$ if $y \neq 0$ and $f(x, y)=0$ if $y=0$. Show that f is continuous at $(0,0)$, it has all directional derivatives at $(0,0)$ but it is not differentiable at $(0,0)$.
2. (T) Let $f(x, y)=\frac{1}{2}(| | x|-|y||-|x|-|y|)$. Is f continuous at $(0,0)$? Which directional derivatives of f exist at $(0,0)$? Is f differentiable at $(0,0)$?
3. (T) Find the equation of the surface generated by the normals to the surface $x+2 y z+x y z^{2}=0$ at all points on the z-axis.
4. (T) Examine the following functions for local maxima, local minima and saddle points:
i) $4 x y-x^{4}-y^{4}$
ii) $x^{3}-3 x y$
5. (D) Let $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$. Show that f has a local minimum at $(0,0)$ along every line through $(0,0)$. Does f have a minimum at $(0,0)$? Is $(0,0)$ a saddle point for f ?
6. (T) Find the absolute maxima of $f(x, y)=x y$ on the unit disc $\left\{(x, y): x^{2}+\right.$ $\left.y^{2} \leq 1\right\}$.
7. (D) Assume that among all rectangular boxes with fixed surface area of 20 square meters, there is a box of largest possible volume. Find its dimensions.
8. (D) L\&T produces steel boxes at three different plants in amounts x, y and z, respectively, producing an annual revenue of $R(x, y, z)=8 x y z^{2}-200(x+y+z)$. The company is to produce 100 units annually. How should production be distributed to maximize revenue?
9. (T) Minimize the quantity $x^{2}+y^{2}+z^{2}$ subject to the constraints $x+2 y+3 z=6$ and $x+3 y+9 z=9$.
