Assignment 13 : Triple Integrals, Surface Integrals, Line integrals

1. (D) Integrate $z e^{x^{2}+y^{2}} d x d y d z$ over the cylinder $x^{2}+y^{2} \leq 4,2 \leq z \leq 3$.
2. (T) Evaluate the integral $\iiint_{W} \frac{d z d y d x}{\sqrt{1+x^{2}+y^{2}+z^{2}}}$; where W is the ball $x^{2}+y^{2}+z^{2} \leq 1$.
3. (D) Find the area of the surface of the portion of the sphere $x^{2}+y^{2}+z^{2}=4 a^{2}$ that lies inside the cylinder $x^{2}+y^{2}=2 a x$.
4. (T) What is the integral of the function $x^{2} z$ taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^{2}+y^{2}=a^{2}$. What is the integral of the given function taken throughout the volume of the cylinder.
5. (D) Compute $\iint_{S} x y d \sigma$, where S is the surface of the cone $x=r \cos t, y=$ $r \sin t, z=r$ for $0 \leq r \leq 1$ and $0 \leq t \leq 2 \pi$.
6. (T) Find the line integral of the vector field $F(x, y, z)=y \vec{i}-x \vec{j}+\vec{k}$ along the path $\mathbf{c}(t)=\left(\cos t, \sin t, \frac{t}{2 \pi}\right)$
$0 \leq t \leq 2 \pi$ joining ($1,0,0$) to ($1,0,1$).
7. (D) Evaluate $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$, where $C:=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
8. (T) Evaluate $\int_{C} T \cdot d R$, where C is the circle $x^{2}+y^{2}=1$ and T is the unit tangent vector.
9. (T) Show that the integral $\int_{C} y z d x+(x z+1) d y+x y d z$ is independent of the path C joining $(1,0,0)$ and $(2,1,4)$.
