Assignment 13 : Triple Integrals, Surface Integrals, Line integrals

- 1. (D) Integrate $ze^{x^2+y^2}dxdydz$ over the cylinder $x^2+y^2 \le 4, \ 2 \le z \le 3$.
- 2. (T) Evaluate the integral $\iiint_W \frac{dzdydx}{\sqrt{1+x^2+y^2+z^2}}$; where W is the ball $x^2+y^2+z^2 \le 1$.
- 3. (D) Find the area of the surface of the portion of the sphere $x^2 + y^2 + z^2 = 4a^2$ that lies inside the cylinder $x^2 + y^2 = 2ax$.
- 4. (T) What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$. What is the integral of the given function taken throughout the volume of the cylinder.
- 5. (D) Compute $\iint_{S} xyd\sigma$, where S is the surface of the cone $x = r \cos t$, $y = r \sin t$, z = r for $0 \le r \le 1$ and $0 \le t \le 2\pi$.
- 6. (T) Find the line integral of the vector field $F(x, y, z) = y\vec{i} x\vec{j} + \vec{k}$ along the path $\mathbf{c}(t) = (\cos t, \sin t, \frac{t}{2\pi})$ $0 \le t \le 2\pi$ joining (1, 0, 0) to (1, 0, 1).
- 7. (D) Evaluate $\int_C \frac{-ydx+xdy}{x^2+y^2}$, where $C := \{(x,y) : x^2 + y^2 = 1\}.$
- 8. (T) Evaluate $\int_C T \cdot dR$, where C is the circle $x^2 + y^2 = 1$ and T is the unit tangent vector.
- 9. (T) Show that the integral $\int_C yz dx + (xz+1)dy + xydz$ is independent of the path C joining (1,0,0) and (2,1,4).