Assignment 14 : Green's /Stoke's /Gauss's Theorems

1. (T) Use Green's Theorem to compute $\int_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary of the region $\left\{(x, y): x, y \geq 0 \& x^{2}+y^{2} \leq 1\right\}$.
2. (D) Show that the value of the line integral $\int x y^{2} d x+\left(x^{2} y+2 x\right) d y$ around any square depends only on the size of the square and not on its location in the plane.
3. (D) Evaluate $\int_{C} \frac{x d y-y d x}{x^{2}+y^{2}}$ along any simple closed curve in the $x y$ plane not passing through the origin. Distinguish the cases where the region R enclosed by C :
(a) includes the origin (b) does not include the origin.
4. (T) Use Stoke's Theorem to evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z$, where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$ and the orientation of C corresponds to counterclockwise motion in the $x y$ plane.
5. (D) Verify the Stoke's Theorem where $\vec{F}=(y, z, x)$ and S is the part of the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$, oriented with \vec{n} pointing outward.
6. (T) Let $\vec{F}=\frac{\vec{r}}{|\vec{r}|^{3}}$ where $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_{S} \vec{F} \cdot n d \sigma=4 \pi$.
7. (\mathbf{T}) Let D be the domain inside the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$. If $\vec{F}=\left(x^{2}+y e^{z}, y^{2}+z e^{x}, z+x e^{y}\right)$, use the divergence theorem to evaluate $\iint_{\partial D} F \cdot \mathbf{n} d \sigma$.
