Assignment 2 : Continuity, Intermediate Value Property

- 1. (D) Let $f : \mathbb{R} \to \mathbb{R}$ be such that for every $x, y \in \mathbb{R}$, $|f(x) f(y)| \le |x y|$. Show that f is continuous.
- 2. (T) Determine the points of continuity for the function $f : [0, 1] \longrightarrow [0, 1]$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

- 3. (D) Let $f: (-1,1) \to \mathbb{R}$ be a continuous function such that in every neighborhood of 0, there exists a point where f takes the value 0. Show that f(0) = 0.
- 4. (T) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$. Show that if $x_0 \in \mathbb{R}$ is such that $f(x_0) > c$, then there exists a $\delta > 0$ such that f(x) > c for all $x \in (x_0 \delta, x_0 + \delta)$.
- 5. (D) Let $f : \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at 0, show that f is continuous at every point $c \in \mathbb{R}$.
- 6. (T) Show that the polynomial $x^4 + 6x^3 8$ has at least two real roots.
- 7. (T) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which takes only rational values. Show that f is a constant function.
- 8. (D) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Show that the range $\{f(x) : x \in [a, b]\}$ is a closed and bounded interval.
- 9. (T) Let $f : [0,2] \to \mathbb{R}$ be a continuous function and f(0) = f(2). Prove that there exist real numbers $x_1, x_2 \in [0,2]$ such that $x_2 x_1 = 1$ and $f(x_2) = f(x_1)$.
- 10. (D) Show that a polynomial of odd degree has at least one real root.