Assignment 3 : Derivatives, Maxima and Minima, Rolle's Theorem

1. (T) Show that the function $f(x)=x|x|$ is differentiable at 0 . More generally, if f is continuous at 0 , then $g(x)=x f(x)$ is differentiable at 0 .
2. (T) Examine the function $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ for differentiability.
3. (D) Show that the function $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is differentiable at all $x \in \mathbb{R}$. Also show that the function $f^{\prime}(x)$ is not continuous at $x=0$. Thus, a function that is differentiable at every point of \mathbb{R} need not have a continuous derivative $f^{\prime}(x)$.
4. (T) Prove that if $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an even function (i.e., $f(-x)=f(x)$ for all $x \in \mathbb{R}$) and has a derivative at every point, then the derivative f^{\prime} is an odd function (i.e., $f(-x)=-f(x)$ for all $x \in \mathbb{R}$).
5. (D) Let $f(0)=0$ and $f^{\prime}(0)=1$. For a positive integerk, show that

$$
\lim _{x \rightarrow 0} \frac{1}{x}\left\{f(x)+f\left(\frac{x}{2}\right)+f\left(\frac{x}{3}\right)+\ldots+f\left(\frac{x}{k}\right)\right\}=1+\frac{1}{2}+\ldots+\frac{1}{k}
$$

6. (T) Show that among all triangles with given base and the corresponding vertex angle, the isosceles triangle has the maximum area.
7. (D) Prove that the equation $x^{13}+7 x^{3}-5=0$ has exactly one real root.
8. (T) Show that exactly two real values of x satisfy the equation $x^{2}=x \sin x+$ $\cos x$.
9. (T) Suppose f is continuous on $[a, b]$, differentiable on (a, b) and satisfies $f^{2}(a)-f^{2}(b)=a^{2}-b^{2}$. The show that the equation $f^{\prime}(x) f(x)=x$ has at least one root in (a, b).
10. (D) Let f and g be functions, continuous on $[a, b]$, differentiable on (a, b) and let $f(a)=f(b)=0$. Prove that there is a point $c \in(a, b)$ such that $g^{\prime}(c) f(c)+f^{\prime}(c)=0$.
