Assignment 4 : Mean Value Theorem, Taylor's Theorem, Curve Sketching

1. (T) Using Mean Value Theorem show that
(i) $\frac{x-1}{x}<\log x<x-1$ for $x>1$.
(ii) $e^{x} \geq 1+x \quad$ for $x \in \mathbb{R}$.
2. (D) Let $a>0$ and $f:[-a, a] \rightarrow \mathbb{R}$ be continuous. Suppose $f^{\prime}(x)$ exists and $f^{\prime}(x) \leq 1$ for all $x \in(-a, a)$. If $f(a)=a$ and $f(-a)=-a$, then show that $f(x)=x$ for every $x \in(-a, a)$.
3. (\mathbf{T}) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Suppose that $f(a)=a$ and $f(b)=b$. Show that there is $c \in(a, b)$ such that $f^{\prime}(c)=1$. Further, show that there are distinct $c_{1}, c_{2} \in(a, b)$ such that $f^{\prime}\left(c_{1}\right)+f^{\prime}\left(c_{2}\right)=2$.
4. Using Cauchy Mean Value Theorem, show that
(a) (D) $1-\frac{x^{2}}{2!}<\cos x$ for $x \neq 0$.
(b) (T) $x-\frac{x^{3}}{3!}<\sin x$ for $x>0$.
(c) (T) $\cos x<1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ for $x \neq 0$.
(d) (T) $\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ for $x>0$.
5. (D) Let f be continuous on $[a, b], a>0$ and differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that

$$
\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c) .
$$

6. (T) Find $\lim _{x \longrightarrow 5}(6-x)^{\frac{1}{x-5}}$ and $\lim _{x \longrightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x}$.
7. (T) Sketch the graphs of $f(x)=x^{3}-6 x^{2}+9 x+1$ and $f(x)=\frac{x^{2}}{x^{2}-1}$.
8. (T) Suppose f is a three times differentiable function on $[-1,1]$ such that $f(-1)=0, f(1)=1$ and $f^{\prime}(0)=0$. Using Taylor's theorem prove that $f^{\prime \prime \prime}(c) \geq$ 3 for some $c \in(-1,1)$.
9. (D) Using Taylor's theorem, for any $k \in \mathbb{N}$ and for all $x>0$, show that

$$
x-\frac{1}{2} x^{2}+\cdots+\frac{1}{2 k} x^{2 k}<\log (1+x)<x-\frac{1}{2} x^{2}+\cdots+\frac{1}{2 k+1} x^{2 k+1} .
$$

