Assignment 5 : Series, Power Series, Taylor Series

- 1. (D) Let $a_n \ge 0$. Then show that both the series $\sum_{n\ge 1} a_n$ and $\sum_{n\ge 1} \frac{a_n}{a_n+1}$ converge or diverge together.
- 2. (T) Prove that $\sum (a_n a_{n+1})$ converges if and only if the sequence a_n converges. Use this to decide the convergence/divergence of the following series:
 - (1) $\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$ (2) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$
- 3. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n\geq 1} a_n$ where a_n equals:
 - (a)(**D**) $1 n \sin \frac{1}{n}$ (b)(**D**) $\frac{1}{n} \log(1 + \frac{1}{n})$ (c)(**T**) $1 \cos \frac{1}{n}$ (d)(**T**) $2^{-n - (-1)^n}$ (e)(**T**) $(1 + \frac{1}{n})^{n(n+1)}$ (f)(**T**) $\frac{n \ln n}{2^n}$
- 4. (T) Let $\sum_{n\geq 1} a_n$ and $\sum_{n\geq 1} b_n$ be series of positive terms satisfying $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for all $n \geq N$. Show that if $\sum_{n\geq 1} b_n$ converges then $\sum_{n\geq 1} a_n$ also converges. Test the series $\sum_{n\geq 1} \frac{n^{n-2}}{e^n n!}$ for convergence.
- 5. (D) Let $\{a_n\}$ be a decreasing sequence, $a_n \ge 0$ and $\lim_{n \to \infty} a_n = 0$. For each $n \in \mathbb{N}$, let $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Show that $\sum_{n \ge 1} (-1)^n b_n$ converges.
- 6. (T) Determine the values of x for which the series $\sum_{n\geq 1} \frac{(x-1)^{2n}}{n^2 3^n}$ converges.
- 7. (T) Show that $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$, $x \in \mathbb{R}$ and $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, $x \in \mathbb{R}$.