Assignment 5 : Series, Power Series, Taylor Series

1. (D) Let $a_{n} \geq 0$. Then show that both the series $\sum_{n \geq 1} a_{n}$ and $\sum_{n \geq 1} \frac{a_{n}}{a_{n}+1}$ converge or diverge together.
2. (T) Prove that $\sum\left(a_{n}-a_{n+1}\right)$ converges if and only if the sequence a_{n} converges. Use this to decide the convergence/divergence of the following series:
(1) $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$
(2) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$
3. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n \geq 1} a_{n}$ where a_{n} equals:
(a)(D) $1-n \sin \frac{1}{n}$
(b)(D) $\frac{1}{n} \log \left(1+\frac{1}{n}\right)$
(c)(T) $1-\cos \frac{1}{n}$
(d) (T) $2^{-n-(-1)^{n}}$
(e)(T) $\left(1+\frac{1}{n}\right)^{n(n+1)}$
(f)(T) $\frac{n \ln n}{2^{n}}$
4. (T) Let $\sum_{n>1} a_{n}$ and $\sum_{n>1} b_{n}$ be series of positive terms satisfying $\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}$ for all $n \geq N$. Show that if $\sum_{n \geq 1} b_{n}$ converges then $\sum_{n \geq 1} a_{n}$ also converges. Test the series $\sum_{n \geq 1} \frac{n^{n-2}}{e^{n} n!}$ for convergence.
5. (D) Let $\left\{a_{n}\right\}$ be a decreasing sequence, $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} a_{n}=0$. For each $n \in \mathbb{N}$, let $b_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$. Show that $\sum_{n \geq 1}(-1)^{n} b_{n}$ converges.
6. (T) Determine the values of x for which the series $\sum_{n \geq 1} \frac{(x-1)^{2 n}}{n^{2} 3^{n}}$ converges.
7. (\mathbf{T}) Show that $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}, x \in \mathbb{R}$ and $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}, x \in \mathbb{R}$.
