Assignment 6: Integration

- 1. (T) If f is a bounded function such that f(x) = 0 except at a point $c \in [a, b]$, then show that f is integrable on [a, b] and that $\int_a^b f = 0$.
- 2. (D) Let $f : [0, 1] \longrightarrow \mathbb{R}$ such that $f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$. Show that f is integrable on [0, 1] and $\int_{0}^{1} f(x) dx = 0$.
- 3. (T) If f and g are continuous functions on [a, b] and if $g(x) \ge 0$ for $a \le x \le b$, then show that there exists $c \in [a, b]$ such that $\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$.

(This result is sometimes called the second mean value theorem for integrals.) The special case g = 1 yields the first mean value theorem for integrals.)

4. (T) Does there exist a continuous function f on [0,1] such that $\int_{0}^{1} x^{n} f(x) dx = \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$.

5. **(D)** Let
$$g_n(y) = \begin{cases} \frac{ny^{n-1}}{1+y} & \text{if } 0 \le y < 1\\ 0 & \text{if } y = 1 \end{cases}$$
. Then prove that $\lim_{n \to \infty} \int_0^1 g_n(y) dy = \frac{1}{2}$
whereas $\int_0^1 \lim_{n \to \infty} g_n(y) dy = 0.$

6. (T) Show that $\int_{0}^{x} (\int_{0}^{u} f(t)dt) du = \int_{0}^{x} f(u)(x-u) du$, assuming f to be continuous.