## Assignment 6: Integration

1. (T) If $f$ is a bounded function such that $f(x)=0$ except at a point $c \in[a, b]$, then show that $f$ is integrable on $[a, b]$ and that $\int_{a}^{b} f=0$.
2. (D) Let $f:[0,1] \longrightarrow \mathbb{R}$ such that $f(x)=\left\{\begin{array}{cc}\frac{1}{n} & \text { if } x=\frac{1}{n} \\ 0 & \text { otherwise }\end{array}\right.$. Show that $f$ is integrable on $[0,1]$ and $\int_{0}^{1} f(x) d x=0$.
3. (T) If $f$ and $g$ are continuous functions on $[a, b]$ and if $g(x) \geq 0$ for $a \leq x \leq b$, then show that there exists $c \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x$.
(This result is sometimes called the second mean value theorem for integrals. The special case $g=1$ yields the first mean value theorem for integrals.)
4. (T) Does there exist a continuous function $f$ on $[0,1]$ such that $\int_{0}^{1} x^{n} f(x) d x=$ $\frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$.
5. (D) Let $g_{n}(y)=\left\{\begin{array}{ll}\frac{n y^{n-1}}{1+y} & \text { if } 0 \leq y<1 \\ 0 & \text { if } y=1\end{array}\right.$. Then prove that $\lim _{n \longrightarrow \infty} \int_{0}^{1} g_{n}(y) d y=\frac{1}{2}$ whereas
$\int_{0}^{1} \lim _{n \longrightarrow \infty} g_{n}(y) d y=0$.
6. (T) Show that $\int_{0}^{x}\left(\int_{0}^{u} f(t) d t\right) d u=\int_{0}^{x} f(u)(x-u) d u$, assuming $f$ to be contiuous.
