Assignment 7: Improper Integrals

- 1. (T) Test the convergence/divergence of the following improper integrals:

- (a) $\int_{0}^{1} \frac{dx}{\log(1+\sqrt{x})}$ (b) $\int_{0}^{1} \frac{dx}{x-\log(1+x)}$ (c) $\int_{0}^{1} \frac{\log x}{\sqrt{x}}$ (d) $\int_{0}^{1} \sin(1/x)dx$.

- (e) $\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$ (f) $\int_{0}^{\infty} e^{-x^2} dx$ (g) $\int_{0}^{\infty} \sin x^2 dx$, (h) $\int_{0}^{\pi/2} \cot x dx$.
- (D) In each case, determine the values of p for which the following improper integrals converge
 - (a) $\int_{0}^{\infty} \frac{1-e^{-x}}{x^{p}} dx$ (b) $\int_{0}^{\infty} \frac{t^{p-1}}{1+t} dt.$
- 3. (T) Show that the integrals $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$ and $\int_{0}^{\infty} \frac{\sin x}{x} dx$ converge. Further, prove that $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{0}^{\infty} \frac{\sin x}{x} dx$.
- 4. **(T)** Show that $\int_{0}^{\infty} \frac{x \log x}{(1+x^2)^2} dx = 0$.
- 5. (D) Prove that improper integral $\int_1^\infty \frac{\sin x}{x^p} dx$ converges conditionally for 0 and absolutely for <math>p > 1.
- 6. (T) Show that $\int_{0}^{s} \frac{1+x}{1+x^2} dx$ and $\int_{-s}^{0} \frac{1+x}{1+x^2} dx$ do not approach a limit as $s \longrightarrow \infty$. However $\lim_{s \to \infty} \int_{a}^{s} \frac{1+x}{1+x^2} dx$ exists.