Assignment 9: Vectors, Curves, Surfaces, Vector Functions

1. (T) Consider the planes $x-y+z=1, x+a y-2 z+10=0$ and $2 x-3 y+z+b=0$, where a and b are parameters. Determine the values of a and b such that the three planes
(a) intersect at a single point,
(b) intersect in a line,
(c) intersect (taken two at a time) in three distinct parallel lines.
2. (D) Determine the equation of the cylinder generated by a line through the curve $(x-2)^{2}+y^{2}=4, z=0$ moving parallel to the vector $\vec{i}+\vec{j}+\vec{k}$.
3. (T) Determine the equation of a cone with vertex $(0,-a, 0)$ generated by a line passing through the curve $x^{2}=2 y, z=h$.
4. (T) The velocity of a particle moving in space is $\frac{d}{d t} c(t)=(\cos t) \vec{i}-(\sin t) \vec{j}+\vec{k}$. Find the particle's position as a function of t if $c(0)=2 \vec{i}+\vec{k}$. Also find the angle between its position vector and the velocity vector.
5. (T) Show that $c(t)=\sin t^{2} \vec{i}+\cos t^{2} \vec{j}+5 \vec{k}$ has constant length and is orthogonal to its derivative. Is the velocity vector of constant magnitude?
6. (T) Find the point on the curve $c(t)=(5 \sin t) \vec{i}+(5 \cos t) \vec{j}+12 t \vec{k}$ at a distance 26π units along the curve from the origin in the direction of increasing arc length.
7. (T) Reparametrize the curves
(a) $c(t)=\frac{t^{2}}{2} \vec{i}+\frac{t^{3}}{3} \vec{k}, \quad 0 \leq t \leq 2$,
(b) $c(t)=2 \cos t \vec{i}+2 \sin t \vec{j}, \quad 0 \leq t \leq 2 \pi$
in terms of arc length.
8. (D) If a plane curve has the Cartesian equation $y=f(x)$ where f is a twice differentiable function, then show that the curvature at the point $(x, f(x))$ is $\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+f^{\prime}(x)^{2}\right]^{3 / 2}}$.
9. (D) For the curve $c(t)=t \vec{i}+t^{2} \vec{j}+\frac{2}{3} t^{3} \vec{k}$ find the equations of the tangent, principal normal and binormal. Also calculate the curvature of the curve.
10. (T) Show that the parabola $y=a x^{2}, a \neq 0$ has its largest curvature at its vertex and has no minimum curvature.
