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Lecture 18 : Improper integrals

We defined
∫ b
a f(t)dt under the conditions that f is defined and bounded on the bounded interval

[a, b]. In this lecture, we will extend the theory of integration to bounded functions defined on
unbounded intervals and also to unbounded functions defined on bounded or unbounded intervals.

Improper integral of the first kind: Suppose f is (Riemann) integrable on [a, x] for all x > a,
i.e.,

∫ x
a f(t)dt exists for all x > a. If lim

x→∞
∫ x
a f(t)dt = L for some L ∈ R, then we say that

the improper integral (of the first kind)
∫∞
a f(t)dt converges to L and we write

∫∞
a f(t)dt = L.

Otherwise, we say that the improper integral
∫∞
a f(t)dt diverges.

Observe that the definition of convergence of improper integrals is similar to the one given for
series. For example,

∫ x
a f(t)dt, x > a is analogous to the partial sum of a series.

Examples : 1. The improper integral
∫∞
1

1
t2

dt converges, because,
∫ x
1

1
t2

dt = 1− 1
x → 1 as x →∞.

On the other hand,
∫∞
1

1
t dt diverges because limx→∞

∫ x
1

1
t dt = limx→∞ log x. In fact, one can show

that
∫∞
1

1
tp dt converges to 1

p−1 for p > 1 and diverges for p ≤ 1.

2. Consider
∫∞
0 te−t2dt. We will use substitution in this example. Note that∫ x

0 te−t2dt = 1
2

∫ x2

0 e−sds = 1
2(1− e−x2

) → 1
2 as x →∞.

3. The integral
∫∞
0 sintdt diverges, because,

∫ x
0 sintdt = 1− cosx.

We now derive some convergence tests for improper integrals. These tests are similar to those
used for series. We do not present the proofs of the following three results as they are similar to
the proofs of the corresponding results for series.

Theorem 17.1 : Suppose f is integrable on [a, x] for all x > a where f(t) ≥ 0 for all t > a. If
there exists M > 0 such that

∫ x
a f(t)dt ≤ M for all x ≥ a then

∫∞
a f(t)dt converges.

This result is similar to the result: If an ≥ 0 for all n and the partial sum Sn ≤ M for all
n, then

∑
an converges. The proofs are also similar. One uses the above theorem to prove the

following theorem which is analogous to the comparison test of series.

In the following two results we assume that f and g are integrable on [a, x] for all x > a.

Theorem 17.2 : (Comparison test) Suppose 0 ≤ f(t) ≤ g(t) for all t > a. If
∫∞
a g(t)dt

converges, then
∫∞
a f(t)dt converges.

Examples : 1. The improper integral
∫∞
1

cos2t
t2

dt converges, because 0 ≤ cos2t
t2

≤ 1
t2

.

2. The improper integral
∫∞
1

2+sint
t dt diverges, because 2+sint

t ≥ 1
t > 0 for all t > 1.

Theorem 17.3 : (Limit Comparison Test(LCT)) Suppose f(t) ≥ 0 and g(t) > 0 for all x > a.
If lim

t→∞
f(t)
g(t) = c where c 6= 0, then both the integrals

∫∞
a f(t)dt and

∫∞
a g(t)dt converge or both

diverge. In case c = 0, then convergence of
∫∞
a g(t)dt implies convergence of

∫∞
a f(t)dt.

Examples : 1. The integral
∫∞
1 sin1

t dt diverges by LCT, because sin 1
t

1
t

→ 1 as t →∞.

2. For p ∈ R,
∫∞
1 e−ttpdt converges by LCT because e−ttp

t−2 → 0 as x →∞.

So far we considered the convergence of improper integrals of only non-negative functions. We will
now consider any real valued functions. The following result is anticipated.
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Theorem 17.4 : If an improper integral
∫∞
a | f(t) | dt converges then

∫∞
a f(t)dt converges i.e.,

every absolutely convergent improper integral is convergent.

Proof : Suppose
∫∞
a | f(t) | dt converges and

∫ x
a f(t)dt exists for all x > a. Since

0 ≤ f(x)+ | f(x) | ≤ 2 | f(x) |, by comparison test
∫∞
a (f(x)+ | f(x) |)dx converges. This implies

that
∫∞
a (f(x)+ | f(x) | − | f(x) |)dx converges. ¤

The converse of the above theorem is not true (see Problem 2).

The following result, known as Dirichlet test, is very useful.

Theorem 17.5 : Let f, g : [a,∞) → R be such that
(i) f is decreasing and f(t) → 0 as t →∞,
(ii) g is continuous and there exists M such that

∫ x
a g(t)dt ≤ M for all x > a.

Then
∫∞
a f(t)g(t)dt converges.

We will not present the proof of the above theorem but we will use it.

Examples : Integrals
∫∞
π

sint
t dt and

∫∞
π

cos t
t dt are convergent.

Improper integrals of the form
∫ b
−∞ f(t)dt are defined similarly. We say that

∫∞
−∞ f(t)dt

is convergent if both
∫ c
−∞ f(t)dt and

∫∞
c f(t)dt are convergent for some element c in R and∫∞

−∞ f(t)dt =
∫ c
−∞ f(t)dt +

∫∞
c f(t)dt.

Improper integral of second kind : Suppose
∫ b
x f(t)dt exists for all x such that a < x ≤ b (the

function f could be unbounded on (a, b]). If lim
x→a+

∫ b
x f(t)dt = M for some M ∈ R, then we say that

the improper integral (of the second kind)
∫ b
a f(t)dt converges to M and we write

∫ b
a f(t)dt = M .

Example : The improper integral
∫ 1
0

1
tp dt converges for p < 1 and diverges for p ≥ 1.

Comparison test and limit comparison test for improper integral of the second kind are analogous
to those of the first kind. If an improper integral is a combination of both first and second kind
then one defines the convergence similar to that of the improper integral of the kind

∫∞
−∞ f(t)dt,

Problem 1: Determine the values of p for which
∞∫
0

f(x)dx converges where f(x) = 1−e−x

xp .

Solution : Let I1 =
1∫
0

f(x)dx and I2 =
∞∫
1

f(x)dx. We have to determine the values of p for which the

integrals I1 and I2 converge. Now one has to see how the function f(x) behaves in the respective
intervals and apply the LCT. Since lim

x→0

1−e−x

x = 1, by LCT with 1
xp−1 , we see that I1 is convergent

iff p− 1 < 1, i.e.,p < 2. Similarly, I2 is convergent (by applying LCT with 1
xp ) iff p > 1. Therefore

∞∫
0

f(x)dx converges iff 1 < p < 2.

Problem 2 : Prove that
∫∞
1

sin x
xp dx converges but not absolutely for 0 < p ≤ 1.

Solution : Let 0 < p ≤ 1. By Dirichlet’s Test, the integral converges. We claim that
∞∫
1

| sin x|
xp dx

does not converge. Since, | sinx| ≥ sin2 x, we see that | sin x
xp | ≥ sin2 x

xp = 1−cos 2x
2xp . By Dirichlet’s Test,

∞∫
1

cos 2x
2xp dx converges ∀ p > 0. But

∞∫
1

1
2xp diverges for p ≤ 1. Hence,

∞∫
1

| sin x
xp | dx does not converge.


