Lecture 39: The Divergence Theorem

In the last few lectures we have been studying some results which relate an integral over a
domain to another integral over the boundary of that domain. In this lecture we will study a
result, called divergence theorem, which relates a triple integral to a surface integral where the
surface is the boundary of the solid in which the triple integral is defined.

Divergence theorem is a direct extension of Green’s theorem to solids in R?. We will now rewrite
Green’s theorem to a form which will be generalized to solids.

Let D be a plane region enclosed by a simple smooth closed curve C. Suppose F(z,y) =
M(x,y)i + N(z,y)j is such that M and N satisfy the conditions given in Green’s theorem. If the
curve C' is defined by R(t) = z(t)i + y( )j then the vector n = ffs’z — 925 i3 a unit normal to the
curve C' because the vector T' = fllf;”z + 4 227 is a unit tangent to the curve C. By Green’s theorem
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Since divF = % —l— 8N , Green’s theorem takes the following form:

/]! divFdzdy = 2{ (F - n)ds.

We will now generalize this form of Green’s theorem to a vector field F' defined on a solid.

Theorem: Let D be a solid in R3 bounded by piecewise smooth (orientable) surface S. Let
F(z,y,z) = P(z,y,2)i + Q(x,y,2)j + R(z,y, z)k be a vector field such that P,Q and R are con-
tinuous and have continuous first partial derivatives in an open set containing D. Suppose n is the
unit outward normal to the surface S. Then
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Remark: The divergence theorem can be extended to a solid that can be partitioned into a finite
number of solids of the type given in the theorem. For example, the theorem can be applied to a
solid D between two concentric spheres as follows. Split D by a plane and apply the theorem to
each piece and add the resulting identities as we did in Green’s theorem.
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Example: Let D be the region bounded by the hemispehere : 22 + 32 + (2 —1)2=9, 1 <2 <4
and the plane z = 1 (see Figure 1). Let F(z,y, 2) = zi+yj+ (2 — 1)k. Let us evaluate the integrals
given in the divergence theorem.
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Triple integral: Note that divF = 3. Therefore,
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Surface integral: The solid D is bounded by a surface S consisting of two smooth surfaces S; and
Sa (see Figure 1). Therefore

//F-nda:// F'nlda+// F -ny do.
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Surface integral over the hemisphere S1: The surface S is given by:
glz,y,2) =2+ +(z—-1)2 -9 =0.
An unit normal is
Vg  wit+yj+(z—1k
IVl a2+ 2+ (z—1)?

This is expected because the position vector is a normal to the sphere. It is clear that the normal
obtained is the outward normal. This implies that over Sy,

y. (2—1)
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T,
n = :§z+ J+ 3
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Therefore
//F-m da:3//do:3-(surface area) = 3 - 187 = 54r.
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Surface integral over the plane region S3: Here the outward normal ny = —k. Therefore F - ny =

—z41. Since on So, z =1

//F-ngda—().
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Problem: Use the divergence theorem to evaluate the surface integral [[, o F-ndo where F(x,y,2) =
(x +y,2%,2%) and S is the surface of the hemisphere x? + y? + 22 = 1 with z > 0 and n is the
outward normal to S.

Hence ffSF-n do = 547.

Solution: First note that the surface is not closed. If we apply the divergence theorem to the solid
D:=22+9y>+22<1, 2> 0, we get

//[[dideV = /S/F.ndg+ //F~n1do
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where S := 2% + y? < 1, z = 0 the base of the hemisphere (see Figure 2) and n; is the outward

normal to S7 which is —k. Since divF = 1, the volume integral in the above equation is the volume

of the hemisphere, 2% Therefore
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which is relatively easier to evaluate. To evaluate the surface integral over Si, consider S; =
(cosf,rsinf), 0 <r <1, 0 <60 <2xr. Then
1 2n 1

// 22 do = //'r2 cos® Ordfdr = /?”37Td7“ = %
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Therefore the requied integral is

2 ow 117
F- = — 4 — =
// n do 3+4 2

S



