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Lecture 8 : Fixed Point Iteration Method, Newton’s Method

In the previous two lectures we have seen some applications of the mean value theorem. We now
see another application.

In this lecture we discuss the problem of finding approximate solutions of the equation

f(x) = 0. (1)

In some cases it is possible to find the exact roots of the equation (1), for example, when f(x) is
a quadratic or cubic polynomial. Otherwise, in general, one is interested in finding approximate
solutions using some (numerical) methods. Here, we will discuss a method called fixed point
iteration method and a particular case of this method called Newton’s method.

Fixed Point Iteration Method : In this method, we first rewrite the equation (1) in the form

x = g(x) (2)

in such a way that any solution of the equation (2), which is a fixed point of g, is a solution of
equation (1). Then consider the following algorithm.

Algorithm 1: Start from any point x0 and consider the recursive process

xn+1 = g(xn), n = 0, 1, 2, ... (3)

If f is continuous and (xn) converges to some l0 then it is clear that l0 is a fixed point of g and
hence it is a solution of the equation (1). Moreover, xn (for a large n) can be considered as an
approximate solution of the equation (1).

First let us illustrate whatever we said above with an example.

Example 1: We know that there is a solution for the equation x3−7x+2 = 0 in [0, 1]. We rewrite
the equation in the form x = 1

7(x3 + 2) and define the process xn+1 = 1
7(x3

n + 2). We have already
seen in a tutorial class that if 0 ≤ x0 ≤ 1 then (xn) satisfies the Cauchy criterion and hence it
converges to a root of the above equation. We also note that if we start with (for example) x0 = 10
then the recursive process does not converge.

It is clear from the above example that the convergence of the process (3) depends on g and
the starting point x0. Moreover, in general, showing the convergence of the sequence (xn) obtained
from the iterative process is not easy. So we ask the following question.

Question : Under what assumptions on g and x0, does Algorithm 1 converge ? When does the
sequence (xn) obtained from the iterative process (3) converge ?

The following result is a consequence of the mean value theorem.

Theorem 8.1: Let g : [a, b] → [a, b] be a differentiable function such that

| g′(x) | ≤ α < 1 for all x ∈ [a, b]. (4)

Then g has exactly one fixed point l0 in [a, b] and the sequence (xn) defined by the process (3), with
a starting point x0 ∈ [a, b], converges to l0.

Proof (*): By the intermediate value property g has a fixed point, say l0. The convergence of
(xn) to l0 follows from the following inequalities:

| xn − l0 | = | g(xn−1)− g(l0) | ≤ α | xn−1 − l0 | ≤ α2 | xn−2 − l0 | .... ≤ αn | x0 − l0 |→ 0.
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If l1 is a fixed point then | l0 − l1 | = | g(l0) − g(l1) | ≤ α | l0 − l1 |<| l0 − l1 | This implies that
l0 = l1. ¤

Example 2 : (i) Let us take the problem given in Example 1 where g(x) = 1
7(x3 + 2). Then

g : [0, 1] → [0, 1] and | g′(x) | < 3
7 for all x ∈ [0, 1]. Hence by the previous theorem the sequence

(xn) defined by the process xn+1 = 1
7(x3

n + 2) converges to a root of x3 − 7x + 2 = 0.

(ii) Consider f : [0, 2] → R defined by f(x) = (1 + x)1/5. Observe that f maps [0, 2] onto itself.
Moreover | f ′(x) | ≤ 1

5 < 1 for x ∈ [0, 2]. By the previous theorem the sequence (xn) defined by
xn+1 = (1 + xn)1/5 converges to a root of x5 − x− 1 = 0 in the interval [0, 2].

In practice, it is often difficult to check the condition f([a, b]) ⊆ [a, b] given in the previous
theorem. We now present a variant of Theorem 1.

Theorem 8.2: Let l0 be a fixed point of g(x). Suppose g(x) is differentiable on [l0 − ε, l0 + ε] for
some ε > 0 and g satisfies the condition | g′(x) | ≤ α < 1 for all x ∈ [l0 − ε, l0 + ε]. Then the
sequence (xn) defined by (3), with a starting point x0 ∈ [l0 − ε, l0 + ε], converges to l0.

Proof : By the mean value theorem g([l0 − ε, l0 + ε]) ⊆ [l0 − ε, l0 + ε] (Prove !). Therefore, the
proof follows from the previous theorem. ¤

The previous theorem essentially says that if the starting point is sufficiently close to the fixed
point then the chance of convergence of the iterative process is high.

Remark : If g is invertible then l0 is a fixed point of g if and only if l0 is a fixed point of g−1.
In view of this fact, sometimes we can apply the fixed point iteration method for g−1 instead of g.
For understanding, consider g(x) = 4x− 12 then | g′(x) |= 4 for all x. So the fixed point iteration
method may not work. However, g−1(x) = 1

4x + 3 and in this case | (g−1)′(x) |= 1
4 for all x.

Newton’s Method or Newton-Raphson Method :

The following iterative method used for solving the equation f(x) = 0 is called Newton’s method.

Algorithm 2 : xn+1 = xn − f(xn)
f ′(xn) n = 0, 1, 2, ....

It is understood that here we assume all the necessary conditions so that xn is well defined. If we
take g(x) = x− f(x)

f ′(x) then Algorithm 2 is a particular case of Algorithm 1. So we will not get in to
the convergence analysis of Algorithm 2. Instead, we will illustrate Algorithm 2 with an example.

Example 3: Suppose f(x) = x2−2 and we look for the positive root of f(x) = 0. Since f ′(x) = 2x,
the iterative process of Newton’s method is xn+1 = 1

2(xn + 2
xn

), n = 0, 1, 2, .... We have already
discussed this sequence in a tutorial class. (Apparently, this process for calculating square roots
was used in Mesopotamia before 1500 BC.)

Geometric interpretation of the iterative process of Newton’s method : Suppose we have
found (xn, f(xn)). To find xn+1, we approximate the graph y = f(x) near the point (xn, f(xn)) by
the tangent : y − f(xn) = f ′(xn)(x− xn). Note that xn+1 is the point of intersection of the x-axis
and the tangent at xn.


