Practice Problems, No. 1

1. Use the sandwich Theorem to find the limit of the following sequence $\left(x_{n}\right)$.
(i) $x_{n}=\left(\sqrt{2}-2^{\frac{1}{3}}\right)\left(\sqrt{2}-2^{\frac{1}{5}}\right) \cdots \cdots \cdots \cdot\left(\sqrt{2}-2^{\frac{1}{2 n+1}}\right)$
(ii) $x_{n}=\frac{1}{1+n^{2}}+\frac{2}{2+n^{2}}+\ldots \ldots .+\frac{n}{n+n^{2}}$
(iii) $x_{n}=\left(a^{n}+b^{n}\right)^{\frac{1}{n}}$ where $0<a<b$.
2. Use problem 3 of the previous assignment to find the limit of the sequence $\left(x_{n}\right)$, where $\left(x_{n}\right)$ is
(i) $\frac{n^{2}}{2^{n}}$
(ii) $\frac{n!}{2^{n^{2}}}$
(iii) $\frac{2^{3 n}}{3^{2 n}}$
(iv) $\frac{b^{n}}{2^{n}}, \quad b>1$
3. Determine the convergence and divergence of the sequence $\left(x_{n}\right)$, where $\left(x_{n}\right)$ is
(i) $x_{n}=\frac{n!}{(2 n+1)!!}$
(ii) $\frac{(2 n)!!}{(2 n+1)!!}$
4. Show that the following sequence $\left(x_{n}\right)$ is bounded and monotone. Find the limit.
(i) $x_{1}=8$ and $x_{n+1}=\frac{1}{2} x_{n}+2$ (ii) $x_{1}=1$ and $x_{n+1}=2-\frac{1}{x_{n}}$.
5. Use Problem 6 of the previous assignment to show that the following sequence $\left(x_{n}\right)$ statisfies Cauchy criterion and find the limit.
(i) $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}}$
(ii) $x_{1}=2$ and $x_{n+1}=2+\frac{1}{x_{n}}$.
