Practice Problems, No. 2

- 1. Show that the absolute value function f(x) = |x| is continuous at every point $c \in R$.
- 2. Let K > 0 and let $f: R \to R$ satisfy the condition $|f(x) f(y)| \le K |x y|$ for all $x, y \in R$. Show that f is continuous at every point $c \in R$.
- 3. Define $g: R \to R$ by

g(x)=2x if x rational. =x+3 if x irrational.

Show that g is continuous only at x = 3.

- 4. Let $f: R \to R$ be continuous at *c* and f(c) > 0. Show that there exists a $\delta > 0$ such that f(x) > 0 for all $x \in (c \delta, c + \delta)$.
- 5. Show that the polynomial $p(x) = x^4 + 7x^3 9$ has at least two real roots.
- 6. Show that the equation $x = \cos x$ has a solution in the interval $[0, \pi/2]$.
- 7. If $g:[a,b] \rightarrow [a,b]$ is continuous show that there is some $c \in [a,b]$ such that g(c)=c.
- 8. Let f be continuous on the interval [0,1] to R and such that f(0) = f(1). Prove that there exists a point c in $\left[0,\frac{1}{2}\right]$ such that $f(c) = f(c + \frac{1}{2})$.