Practice Problems, No. 2

1. Show that the absolute value function $f(x)=|x|$ is continuous at every point $c \in R$.
2. Let $K>0$ and let $f: R \rightarrow R$ satisfy the condition $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in R$. Show that f is continuous at every point $c \in R$.
3. Define $g: R \rightarrow R$ by

$$
\begin{aligned}
g(x) & =2 x & & \text { if } x \text { rational. } \\
& =x+3 & & \text { if } x \text { irrational. }
\end{aligned}
$$

Show that g is continuous only at $x=3$.
4. Let $f: R \rightarrow R$ be continuous at c and $f(c)>0$. Show that there exists a $\delta>0$ such that $f(x)>0$ for all $x \in(c-\delta, c+\delta)$.
5. Show that the polynomial $p(x)=x^{4}+7 x^{3}-9$ has at least two real roots.
6. Show that the equation $x=\cos x$ has a solution in the interval $[0, \pi / 2]$.
7. If $g:[a, b] \rightarrow[a, b]$ is continuous show that there is some $c \in[a, b]$ such that $g(c)=c$.
8. Let f be continuous on the interval $[0,1]$ to R and such that $f(0)=f(1)$.

Prove that there exists a point c in $\left[0, \frac{1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.

