Practice Problems, No. 3

1. Show that $f(x)=x^{\frac{1}{3}}, x \in R$ is not differentiable at $x=0$.
2. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}$ for x rational, $f(x)=0$ for x irrational. Show that f is differentiable at $x=0$ find $f^{\prime}(0)$.
3. Suppose $f(R) \rightarrow R$ is differentiable at c and that $f(c)=0$. Show that $g(x)=|f(x)|$ is differentiable at c if and only if $f^{\prime}(c)=0$.
4. Assume that f is differentiable at a. Find

$$
\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}
$$

5. Assume that f is continuous on $[a, b], a>0$, and differentiable on an open interval (a, b). Show that if $\frac{f(a)}{a}=\frac{f(b)}{b}$, then there is $x_{0} \in(a, b)$ such that $x_{0} f^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Assume that $a_{0} a_{1}, \ldots, a_{n}$ are real numbers such
that $\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\ldots \ldots \ldots \ldots .+\frac{a_{n-1}}{2}+a_{n}=0$.
Prove that the polynomial $p(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots \ldots . .+a_{n}$ has at least one root in $(0,1)$.

