Practice Problems, No.-4

- 1. Use mean value theorem to show that $\sin x \le x$ for all $x \ge 0$.
- 2. Let $f:[a,b] \rightarrow R$ be differentiable. If f'(x)=0 for all $x \in [a,b]$, show that f is constant on [a,b].
- 3. Let $f:[0,\infty) \to R$ be differentiable on $(0,\infty)$ and assume that $f'(x) \to b$ as $x \to \infty$
 - (a) Show that for any, h > 0, we have $\lim_{x \to \infty} \frac{f(x+h) f(x)}{h} = b$.

(b) Show that if
$$f(x) \rightarrow a$$
 as $x \rightarrow \infty$, then $b = 0$.

- (c) Show that if f is bounded then $\lim_{x \to \infty} \frac{f(x)}{x} = b$.
- 4. Prove that if f is differentiable on [a,b] and if the derivative f' is bounded on then $\exists M > 0$ such that $|f(x) - f(y)| \le M |x - y|$ for all $x, y \in [a,b]$.
- 5. Let f, g be differentiable on R and suppose that f(0) = g(0) and $f'(x) \le g'(x)$ for all $x \ge 0$. Show that $f(x) \le g(x)$ for all $x \ge 0$.
- 1. Let $f:[a,b] \to R$ be continuous on [a, b] and differentiable on (a,b). If f(a) < f(b), then show that f'(c) > 0 for some $c \in (a,b)$.
- 2. Sketch the graph of the function $f(x) = x^3 6x^2 + 9x + 1$.