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The dynamics of one parameter family of non-critically finite even transcendental meromorphic function ξλ(z) =

= λ
sinh2 z

z4
, λ > 0 is investigated in the present paper. It is shown that bifurcations in the dynamics of the function

ξλ(x) for x ∈ R \ {0} occur at two critical parameter values λ =
x5

1

sinh2 x1

(≈ 1.26333) and λ =
x̃5

sinh2 x̃
(≈ 2.7.715),

where x1 and x̃ are the unique positive real roots of the equations tanh x =
2x
3 and tanhx =

2x
5 respectively. For certain

ranges of parameter values of λ, it is proved that the Julia set of the function ξλ(z) contains both real and imaginary
axes. The images of the Julia sets of ξλ(z) are computer generated by using the characterization of the Julia set of ξλ(z)
as the closure of the set of points whose orbits escape to infinity under iterations. Finally, our results are compared with
the recent results on dynamics of (i) critically finite transcendental meromorphic functions λ tan z having polynomial

Schwarzian Derivative [10, 15, 19] and (ii) non-critically finite transcendental entire functions λ
ez − 1

z [14].

1. Introduction

In early twentieth century, the iteration theory of complex functions originated in works of Julia and
Fatou. There had been a long period of inactivity after that. During the end of 20th century, a renewed
interest in the study of iteration theory started due to beautiful computer graphics and wide ranging
applications in engineering and science [5, 8, 16, 17, 18, 20] associated with it. In iteration theory,
complex dynamics has so far been extensively studied for rational and entire functions. However, in
comparison to the investigations on dynamics of rational and entire functions not much work has been
done in this direction for transcendental meromorphic functions. The initial work on the study of the
iteration of transcendental meromorphic functions may be found in [3, 6, 10, 11].

One of the major difficulties arising in the study of dynamics of transcendental meromorphic
functions is the fact that iterations of meromorphic maps do not lead to a dynamical system. The
point at infinity is an essential singularity for such a map, so the map can not be extended continuously
to infinity. Hence the forward orbit of a pole terminates. All other points have well defined forward
orbits. Despite the fact that certain orbits of a meromorphic function are finite, the study of iterations
of such functions are important. For example, the iterative processes associated with Newton’s method
applied to an entire function often yields a meromorphic function as the root finder.

The singular values of a function play an important role in determining the dynamics of the
function. Let C and Ĉ denote the complex plane and the extended complex plane respectively. A point
w ∈ C is said to be a critical point of f if f ′(w) = 0. The value f(w) corresponding to a critical point
w is called a critical value of f . A point w ∈ Ĉ is said to be an asymptotic value of f(z), if there is
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a continuous curve γ(t) satisfying limt→∞ γ(t) = ∞ and limt→∞ f(γ(t)) = w. A function is said to
be critically finite if it has only finitely many asymptotic and critical values. If a function f(z) is not
critically finite, then it is said to be non-critically finite. A singular value of f is defined to be either
a critical value or an asymptotic value of f .

The dynamics of transcendental entire and meromorphic functions are somewhat different from
the dynamics of polynomials or rational functions, mainly because of the essential singularity at ∞ for
transcendental functions. By Picard’s theorem, for meromorphic (entire) transcendental function, any
neighbourhood of ∞ is mapped over the entire plane infinitely often missing at most two points (one
point) which, in the language of dynamical systems, means that meromorphic (entire) map exhibits
a tremendous amount of hyperbolicity near ∞. However, the dynamical behaviour of critically finite
meromorphic transcendental functions share some of the properties of entire and rational functions,
for instance, these functions do not have wandering domains [4] and Baker domains [6]. In contrast,
non-critically finite transcendental meromorphic functions may have wandering domains and Baker
domains [22].

Though, the dynamics of critically finite meromorphic transcendental functions has been studied
for several interesting classes during last two decades [4, 7, 9, 10, 15], the dynamics of non-critically
finite transcendental meromorphic functions has not been explored so for, probably because of non-
applicability of Sullivan’s Theorem [6] to these functions. Also, the presence of infinitely many critical
values and the behaviour of the orbits of critical values for non-critically finite transcendental mero-
morphic functions make it difficult to study the dynamics of such functions. In the present work, an
effort is made to fill this gap by studying the dynamics of a one parameter family of non-critically
finite even transcendental meromorphic functions. For this purpose, a one paramter family H is con-
sidered. It is found that functions in the family H have bounded singular values. Bifurcations in the
dynamics on real axis for the functions in our family occur at two parameter values. It is obsereved
that taming effect occurs in the Julia set of function in family H after crossing the first paramter
value while explosion occurs in the Julia set after crossing the second paramter value. It is observed
that the characterization of the Julia set of a function in H as the closure of the set of all its escaping
points continues to hold for functions in H. The Julia set of a function in H is found to contain
both real and imaginary axes for certain parameter values. The comparison of salient features of
dynamics of functions in the family H with recent results on dynamics of (i) critically finite transcen-
dental meromorphic function λ tan z, λ > 0, having polynomial Schwarzian Derivative [10, 15, 19] and

(ii) non-critically finite transcendental entire function λez − 1
z , λ > 0 [14], demonstrate a qualitative

resembelance in their dynamics even though their Julia sets have seemingly different nature. Fur-
ther, it is noted that while the functions considered in [10] have polynomial Schwarzian Derivatives,
the Schwarzian Derivatives of functions in our family H are in general transcendental meromorphic
functions.

The following definitions and results are needed in the sequel. The Fatou set (or stable set) of
a function f , denoted by F (f), is defined to be the set of all complex numbers where the family of
iterates {fn} of f forms a normal family in the sense of Montel. The Julia set (or chaotic set), denoted
by J(f), is the complement of the Fatou set of f . The escaping points set of meromorphic function
f(z), denoted by I(f), is defined as

I(f) = {z ∈ C : fn(z) → ∞ as n → ∞ and fn(z) �= ∞}.

Let B be a class of meromorphic functions having bounded singular values. Zheng [23] proved
that if f ∈ B is a meromorphic function, then for z ∈ F (f), the orbit {fn(z)}∞n=0 does not tend to ∞.
Dominguez [11] gave a characterization of the Julia set of meromorphic transcendental functions as the
boundary of the set of all escaping points, i.e., if f(z) is a meromorphic transcendental function, then
J(f) = ∂I(f). The following characterization, given by Zheng [21] for meromorphic transcendental
function, is quite useful for computer generation of the Julia sets:
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Theorem 1.1. Let fλ ∈ B be transcendental, then J(f) = I(f).

For the class of meromorphic functions with polynomial Schwarzian Derivatives, the characteri-
zation of the Julia set in Theorem 1.1 is given by Hoggard [13].

The following results exhibit the importance of singular values in the dynamics of a transcendental
meromorphic function:

Theorem 1.2 ([7]). Let f(z) be a transcendental meromorphic function. Suppose z0 lies on an
attracting cycle or a parabolic cycle f(z). Then, the orbit of at least one critical value or asymptotic
value is attracted to a point in the orbit of z0.

An analogue of Denjoy-Carleman-Ahlfors Theorem [1], guaranteeing finite number of asymptotic
values of a meromorphic function, is given by the following:

Theorem 1.3 ( [2]). Let f be a meromorphic function of a finite Nevanlinna order ρ and

limr→∞
n(r,∞, f)

log r
< +∞. Then, the number of finite asymptotic values of the function f counted

according to their multiplicity is not greater than 2ρ.

2. One parameter family H of non-critically finite functions

Let

H =
{

ξλ(z) = λ sinh2 z

z4
: λ > 0, z ∈ Ĉ

}

be one parameter family of even transcendental meromorphic functions. The following proposition
shows that the functions in the family H are indeed non-critically finite and have bounded singular
values:

Proposition 2.1. Let ξλ ∈ H. Then, the function ξλ(z) is non-critically finite and all of its
singular values are bounded.

Proof.
The derivative of the function ξλ(z) for z �= 0 is given by

ξ′λ(z) = λ
2 sinh z(z cosh z − 2 sinh z)

z5

The critical points of the function ξλ(z) are solutions of the equation ξ′λ(z) = 0. This implies that
z = mπi, where m is a non-zero integer and solutions of the equation

z cosh z − 2 sinh z = 0 (2.1)

are critical points of ξλ(z). The solutions of Equation (2.1) are the same as the solutions of the equation
tanh z = z

2 . This equation has a solution z0 if only if the equation tan w = w
2 has a solution iz0. Now

equating real and imaginary parts of the equation tanw = w
2 we get that, for a non-zero z = x + iy,

sin 2x
cos 2x + cosh 2y

= 1
2x and sinh 2y

cos 2x + cosh 2y
= 1

2y. This implies that

sin 2x
x =

sinh 2y
y . (2.2)

It is easily seen that, for x, y �= 0, | sin 2x
x | < 2 and sinh 2y

y > 2 so that (2.2) is not possible in this
case. Therefore, at least one of x, y must vanish for (2.2) to hold. Equivalently, (2.2) has only real or
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purely imaginary roots. If x = 0, then tan w = w
2 implies that tanh y = 1

2y and this equation has two

zeros. Therefore, tan w = w
2

has two purely imaginary solutions. If y = 0, then tan w = w
2

implies

that tan x = 1
2x and the latter equation has infinitely many real solutions. Consequently, it follows

that Equation (2.1) has two real solutions and infinitely many purely imaginary solutions. Thus, the
function ξλ(z) has two real and infinitely many imaginary critical points.

To find the critical values of the function ξλ(z), we note that ξλ(mπi) = 0, where m is a non-
zero integer. Let {iyk}∞k=−∞, yk real, are critical points of ξλ(z) other than the critical points mπi,
m = ±1,±2, . . . . Since,

ξλ(iyk) = λ
sin2 yk

y4
k

and the values sin2 yk

y4
k

are real and distinct for distinct k, it follows that the values in the set

{ξλ(iyk)}∞k=−∞ are real and distinct. Therefore, the function ξλ(z) possesses infinitely many real

critical values. Since limr→∞
n(r,∞, ξ)

log r
< +∞, and Nevanlinna order [12] of the function ξλ(z) is 1, by

an analogue of Denjoy-Carleman-Ahlfors theorem (c.f. Theorem 1.3), the function ξλ(z) has at most
two finite asymptotic value. This proves that the function ξλ(z) is non-critically finite.

Since,

|ξλ(iyk)| = λ
| sin2 yk|
|yk|4

� λ

y4
k

� λM

where, M = max
1�k<∞

{ 1
y4

k

}, all critical values of the function ξλ(z) are bounded. Further, ξλ(z) takes

finite values on both the real solutions of Equation (2.1). Thus, it follows that all of singular values
of the function ξλ(z) are bounded.

The dynamical behaviour of functions in the family H is now described in the sequel. In Section 3,
the fixed points of the function ξλ(x), x ∈ R\{0} are obtained and their nature is investigated. The
dynamics of the function ξλ(x) is described in Section 4. It is shown that there exist critical parameter
values λ1, λ2 > 0 such that bifurcations in the dynamics of the function ξλ(x) occur at λ = λ1 and

λ = λ2, where λ1 =
x5

1

sinh2 x1

(≈ 1.26333), λ2 = x̃5

sinh2 x̃
(≈ 2.7.715); x1, x̃ being the unique positive

real roots of the equations tanhx = 2x
3 and tanh x = 2x

5 respectively. If the parameter value crosses

the value λ1 or λ2, then a change in the dynamics of ξλ(x) is found to occur (Fig. 4). It is obsereved
that taming effect occurs in the Julia set of function in family H after crossing the paramter value λ1

while explosion occurs in the Julia set after crossing the paramter value λ2 (Fig. 6). The dynamics of
the function ξλ(z) ∈ H for z ∈ Ĉ and 0 < λ � λ1 is investigated in Section 5.1. The characterization
of the Julia set of the function ξλ(z) as the closure of the set of all escaping points of the function
ξλ(z) is established for 0 < λ < λ1 and λ = λ1 in this section. Further, for 0 < λ < λ1, it is proved
in this section that the Julia set of the function ξλ(z) contains both real and imaginary axes. For
λ = λ1, it is found in the same section that the Fatou set of the function ξλ(z) contains a parabolic
domain. In Section 5.2, the characterization of the Julia set of the function ξλ(z) as the closure of
the set of all escaping points of the function ξλ(z) is found for λ1 < λ < λ2, λ = λ2 and λ > λ2.
Further, for the case λ1 < λ < λ2, it is proved in this section that the Fatou set of the function ξλ(z)
does not contain any basin of attraction or parabolic domain except the basin of attraction A(aλ) of
the real attracting fixed point aλ of ξλ(z). For λ > λ2, it is found in this section that the Julia set
of the function ξλ(z) contains both real and imaginary axes. In Section 6, the results of the present
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paper are applied to generate computer images of Julia sets of the function ξλ(z) using the algorithm
developed in this section. Finally, our results concerning the dynamics of functions in H are compared
with recent results on dynamics of (i) functions λ tan z, λ ∈ C \ {0} having polynomial Schwarzian
Derivative due to Devaney and Keen [10], Keen and Kotus [15] and Stallard [19] (ii) non-critically

finite transcendental entire functions λez − 1
z , λ > 0 [14].

3. Fixed points and their nature for functions in H
In this section, we find the fixed points of the function ξλ(x) = λ sinh2 x

x4
and describe their nature.

Let

φ(x) =




x5

sinh2 x
for x �= 0

0 for x = 0.

(3.1)

Properties of Function φ(x):

It follows easily from (3.1) that

i. φ(x) is continuous in R.

ii. φ(x) is positive in (0,∞), is negative in (−∞, 0).

iii. φ(x) → 0 as x → −∞ and φ(x) → 0 as x → ∞.

Further,

iv. φ′(x) is continuous in R:

Since φ′(x) = 5x4 sinh x − 2x5 coshx

sinh3 x
, it follows easily that φ′(0) = limx→0 φ′(x) so that φ′(x) is

continuous in R.

v. φ′(x) has a unique positive real zero at x = x̃(≈ 2.46406), where x̃ is a real positive

solution of tanh x = 2x
5

:

Since φ′(x) = 0 gives tanh x = 2x
5 and by Newton-Rapson’s Method, x̃ ≈ 2.46406 is a real positive

solution of Ψ(x) = tanh x − 2x
5 = 0 (c.f. Fig. 1(a)), the Property (v) follows.

vi. φ(x) is strictly increasing in (0, x̃), is strictly decreasing in (x̃,∞) and has a maximum

at x = x̃, where x̃ is a real positive solution of tanh x = 2x
5

:

By Property (v), φ′(x̃) = 0, where x̃ is the real positive solution of tanh x = 2x
5 .

φ′′(x̃) = 20x̃3 sinh x̃ − 5x̃4 cosh x̃ − 2x̃5 sinh x̃

sinh3 x̃

=
x̃3{(20 − 2x̃2) tanh x̃ − 5x̃}

tanh x̃ sinh2 x̃
=

x̃3(15 − 4x̃2)

2 sinh2 x̃
.

Since x̃ ≈ 2.46406, φ′′(x̃) < 0. Therefore, the function φ(x) has exactly one maxima in (0, ∞)
at x = x̃. It therefore follows by Property (iii) that φ(x) decreases to 0 in (x̃,∞) and increases
in (0, x̃).

The graph of φ(x) therefore is as shown in Fig. 1(b).
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Fig. 1. (a) Graph of Ψ(x) (b) Graph of φ(x)

Throughout in the sequel, we denote

λ2 = φ(x̃) (3.2)

where, x̃ is the unique positive real solution of the equation tanhx = 2x
5 . The following proposition

gives the number and locations of real fixed points of the function ξλ(x) for λ > 0:

Proposition 3.1. Let ξλ ∈ H. Then, the locations of real fixed points of the function ξλ(x) =

= λ sinh2 x
x4

are given by the following:

i. For 0 < λ < λ2, ξλ(x) has exactly one fixed point in each of the intervals (0, x̃) and (x̃,∞), where
x̃ is solution of the equation tanh(x) = 2x

5
.

ii. For λ = λ2, the only fixed point of ξλ(x) is at x = x̃, where x̃ is as in (i).

iii. For λ > λ2, ξλ(x) has no fixed points.

Proof: The fixed points of the function ξλ(x) are the solutions of the equation

λ = φ(x)

where, φ(x) is given by (3.1). We have the following cases:

i. 0 < λ < λ2

Since φ(x̃) = λ2 and λ < λ2, in view of Properties (i), (iii) and (vi) of the function φ(x), the line
u = λ intersects the graph of φ(x) (Fig. 1(b)) at exactly two points. Using Properties (ii), (iii)
and (vi), it follows in view of φ(x̃) = λ2 that one of the solutions of φ(x) = λ for 0 < λ < λ2 lies
in the interval (0, x̃). Similarly, since by Property (vi) φ(x) is decreasing in the interval (x̃,∞)
and φ(x̃) = λ2, the other solution of φ(x) = λ for 0 < λ < λ2 lies in the interval (x̃,∞). Thus,
ξλ(x) has two real fixed points lying in the intervals (0, x̃) and (x̃,∞).

ii. λ = λ2

The function φ(x) has exactly one maxima at x = x̃ (c.f. Property (vi)) and the maximum value
of φ(x) is φ(x̃) = λ2, the line u = λ2 intersects the graph of φ(x) at exactly one point x = x̃.
Therefore, the equation φ(x) = λ2 has exactly one solution at x = x̃. Thus, ξλ(x) has only one
real fixed point at x = x̃ for λ = λ2.

iii. λ > λ2

By Property (vi), the maximum value of φ(x) is φ(x̃) = λ2, therefore, for λ > λ2, the line u = λ
does not intersect the graph of φ(x). Consequently, the equation φ(x) = λ has no solution for
λ > λ2. Thus, ξλ(x) has no fixed point for λ > λ2.
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Let

λ1 = φ(x1) (3.3)

where, x1 is a positive solution of the equation tanh x = 2x
3

.

Throughout in the sequel, the fixed points of the function ξλ(x) found in Proposition 3.1 are
denoted by r1,λ ∈ (0, x1), r2,λ ∈ (x2,∞), aλ ∈ (x1, x̃) and rλ ∈ (x̃, x2), where x̃ is a positive solution of

tanh x = 2x
5 and x1, x2 be solutions of λ1 = φ(x) lying in the intervals (0, x̃) and (x̃,∞) respectively.

The nature of these fixed points of the function ξλ(x) for different values of parameterλ is described
in the following theorem:

Theorem 3.1. Let ξλ(x) = λ sinh2 x
x4

for x ∈ R\{0} and λ > 0, and x1, x2 be solutions of

λ1 = φ(x) lying in the intervals (0, x̃) and (x̃,∞) respectively, where x̃ is a positive solution of the
equation tanh x = 2x

5 .

i. If 0 < λ < λ1, then the fixed points r1,λ ∈ (0, x1) of ξλ(x) and r2,λ ∈ (x2,∞) of ξλ(x) are repelling.

ii. If λ = λ1, then the fixed point x1 of ξλ(x) is rationally indifferent and the fixed point x2 of ξλ(x)
is repelling.

iii. If λ1 < λ < λ2, then the fixed point aλ ∈ (x1, x̃) of ξλ(x) is attracting and the fixed point
rλ ∈ (x̃, x2) of ξλ(x) is repelling.

iv. If λ = λ2, then the fixed point x̃ of ξλ(x) is rationally indifferent.

Proof. Since the derivative of the function ξλ(x) is given by

ξ′λ(x) = λ
2 sinh x(x cosh x − 2 sinh x)

x5

and the fixed points of the function ξλ(x) are solutions of λ = x5

sinh2 x
, it follows that the multiplier

ξ′λ(xf ) of the fixed point xf is given by

|ξ′λ(xf )| = 2|xf coth xf − 2| (3.4)

Let

G(x) =




2(x coth x − 2) for x �= 0

−2 for x = 0.

The function G(x) is differentiable and its derivative is given by

G′(x) =




2(coth x − xcosech2x) for x �= 0

0 for x = 0.

Since, G′(x) �= 0 for x �= 0, G′(0) = 0 and G′′(0) = 4
3 > 0, the function G(x) has exactly one minima

at x = 0 and the minimum value is −2. Since G′(x) > 0 for x ∈ (0,∞) and G′(x) < 0 for x ∈ (−∞, 0),
the function G(x) is increasing from −2 to ∞ as x increases from 0 to ∞ and G(x) is decreasing from
−∞ to −2 as x increases from −∞ to 0. Thus, it follows that the function |G(x)| (Fig. 2) satisfies

|G(x)|




< 1 for x ∈ (−x̃,−x1) ∪ (x1, x̃)
= 1 for x = ±x1,±x̃
> 1 for x ∈ (−∞,−x̃) ∪ (−x1, 0) ∪ (0, x1) ∪ (x̃,∞).
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Fig. 2. Graph of |G(x)|

Consequently, by (3.4), we get that the multiplier ξ′λ(xf ) of the fixed point xf satisfies

|ξ′λ(xf )| < 1 for xf ∈ (−x̃,−x1) ∪ (x1, x̃) (3.5)
|ξ′λ(xf )| = 1 for xf = ±x1,±x̃ (3.6)
|ξ′λ(xf )| > 1 for xf ∈ (−∞,−x̃) ∪ (−x1, 0) ∪ (0, x1) ∪ (x̃,∞). (3.7)

i. 0 < λ < λ1

Since the fixed point r1,λ ∈ (0, x1), by Inequality (3.7), |ξ′λ(r1,λ)| > 1. It therefore follows that r1,λ

is a repelling fixed point of ξλ(x). Similarly, since the fixed point r2,λ ∈ (x2,∞), by Inequality
(3.7), |ξ′λ(r2,λ)| > 1. Consequently, r2,λ is a repelling fixed point of ξλ(x).

ii. λ = λ1

By Equation (3.6), |ξ′λ(x1)| = 1 Therefore, x = x1 is a rationally indifferent fixed point of ξλ(x).
Further, since x2 > x̃ > x1, it follows that x2 ∈ (x̃,∞). By Inequality (3.7), |ξ′λ(x2)| > 1. It
therefore follows that x2 is a repelling fixed point of ξλ(x).

iii. λ1 < λ < λ2

Since the fixed point aλ ∈ (x1, x̃), by Inequality (3.5), |ξ′λ(aλ)| < 1. Thus, aλ is an attracting
fixed point of ξλ(x). Further, since the fixed point rλ ∈ (x̃, x2), by Inequality (3.7) gives that
|ξ′λ(rλ)| > 1. It therefore follows that rλ is a repelling fixed point of ξλ(x).

iv. λ = λ∗∗

By Equation (3.6), |ξ′λ(x̃)| = 1. Consequently, x = x̃ is a rationally indifferent fixed point of
ξλ(x).

4. Bifurcations in Dynamics on R\{0}
In this section, the dynamics of functions ξλ ∈ H on the real line is described. It is proved in the
following theorem that there exist parameter values λ1, λ2 > 0 such that bifurcations in the dynamics
of the function ξλ(x), x ∈ R\T0 occur at λ = λ1 and λ = λ2, where T0 is the set of the points that
are backward orbits of the pole 0 of the function ξλ(x). The Phase Portrait (Fig. 4) describing the
dynamics of the function ξλ(x) for various values of parameter λ is also obtained by using the results
of this theorem.

Theorem 4.1. Let ξλ(x) = λ sinh2 x
x4

for x ∈ R\{0}.

a. If 0 < λ < λ1, ξn
λ(x) → ∞ as n → ∞ for x ∈ [(−∞, −r2,λ)∪ (−η1, 0)∪ (0, η1)∪ (r2,λ, ∞))]\T0

and the orbits {ξn
λ (x)} are chaotic for x ∈ [(−r2,λ,−r1,λ)∪(−r1,λ,−η1)∪(η1, r1,λ)∪(r1,λ, r2,λ)]\T0,

where r1,λ and r2,λ are repelling fixed points of ξλ(x) and η1 is a positive solution of ξλ(x) = r2,λ.

150 REGULAR AND CHAOTIC DYNAMICS, V. 9, №2, 2004



DYNAMICS OF A FAMILY OF NON-CRITICALLY MEROMORPHIC FUNCTIONS

b. If λ = λ1, ξn
λ(x) → x1 as n → ∞ for x ∈ [(−x2,−η2) ∪ (η2, x2)]\T0 and ξn

λ(x) → ∞ as n → ∞
for x ∈ [(−∞,−x2) ∪ (−η2, 0) ∪ (0, η2) ∪ (x2,∞)]\T0, where x1 is a rationally indifferent fixed
point, x2 is a repelling fixed point of ξλ(x) and η2 is a positive solution of ξλ(x) = x2.

c. If λ1 < λ < λ2, ξn
λ(x) → aλ as n → ∞ for x ∈ [(−rλ, −η3) ∪ (η3, rλ)]\T0 and ξn

λ(x) → ∞
as n → ∞ for x ∈ [(−∞,−rλ) ∪ (−η3, 0) ∪ (0, η3) ∪ (rλ,∞)]\T0, where aλ is an attracting fixed
point, rλ is a repelling fixed point of ξλ(x) and η3 is a positive solution of ξλ(x) = rλ.

d. If λ = λ2, ξn
λ(x) → x̃ as n → ∞ for x ∈ [(−x̃,−η4) ∪ (η4, x̃)]\T0 and ξn

λ(x) → ∞ as n → ∞ for
x ∈ [(−∞,−x̃) ∪ (−η4, 0) ∪ (0, η4) ∪ (x̃,∞)]\T0, where x̃ is a rationally indifferent fixed point of
ξλ(x) and η4 is a positive solution of ξλ(x) = x̃.

e. If λ > λ2, ξn
λ(x) → ∞ as n → ∞ for all x ∈ R\T0.

Proof.
Let xmin denotes the real positive solution of the equation tanh x = x

2 . Then, ξ′(xmin) = 0. By
Newton-Rapson Method, xmin ≈ 1.91501. Since,

ξ′′(x) =
λ cosh2 x(x2 − 2)

2x4

it follows that f ′′
λ(xmin) > 0. This proves that xmin is the minima of ξλ(x).

Define the function tλ(x) = ξλ(x) − x for x ∈ R\{0}. It is easily seen that the function tλ(x) is
continuously differentiable for x ∈ R\{0}. Note that the fixed points of the function ξλ(x) are zeros
of the function tλ(x).

a. If 0 < λ < λ1, by Theorem 3.1, the function ξλ(x) has only two repelling fixed points r1,λ

and r2,λ. Since t′λ(r1,λ) < −2 and in a neighbourhood of r1,λ the function t′λ(x) is continuous,
t′λ(x) < 0 in some neighbourhood of r1,λ. Therefore, tλ(x) is decreasing in a neighbourhood of
r1,λ. By the continuity of the function tλ(x), for sufficiently small δ1 > 0, tλ(x) > 0 in (r1,λ −
− δ1, r1,λ) and tλ(x) < 0 in (r1,λ, r1,λ + δ1). Further, since t′λ(r2,λ) > 0 and in a neighbourhood
of r2,λ the function t′λ(x) is continuous, t′λ(x) > 0 in some neighbourhood of r2,λ. Therefore,
tλ(x) is increasing in a neighbourhood of r2,λ. By the continuity of tλ(x), for sufficiently small
δ2 > 0, tλ(x) > 0 in (r2,λ, r2,λ + δ2) and tλ(x) < 0 in (r2,λ − δ2, r2,λ). Since tλ(x) �= 0 in
(0, r1,λ) ∪ (r1,λ, r2,λ) ∪ (r2,λ, ∞), it now follows that tλ(x) > 0 in (0, r1,λ) ∪ (r2,λ, ∞) and
tλ(x) < 0 in (r1,λ, r2,λ) (Fig. 3(a)). Thus,

tλ(x) = ξλ(x) − x




> 0 for x ∈ (0, r1,λ) ∪ (r2,λ, ∞)

< 0 for x ∈ (r1,λ, r2,λ).
(4.1)

The dynamics of the function ξλ(x) is now described by the following cases:

Case-i (x ∈ [(−∞, −r2,λ) ∪ (−η1, 0) ∪ (0, η1) ∪ (r2,λ, ∞)]\T0):
By (4.1), it follows that, for x ∈ (r2,λ, ∞), ξλ(x) > x. Since the function ξλ(x) is
increasing for x ∈ (r2,λ, ∞), ξn

λ(x) → ∞ as n → ∞. Further, since f(η1) = r2,λ

and ξλ(x) is decreasing in (0, η1), the function ξλ(x) maps the interval (0, η1) into
(r2,λ, ∞). Now, using the above arguments, we get ξn

λ(x) → ∞ as n → ∞ for
x ∈ (0, η1). Next, since ξλ(x) is an even function, using the above arguments again,
we get ξn

λ(x) → ∞ as n → ∞ for x ∈ [(−∞, −r2,λ) ∪ (−η1, 0)]\T0.
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Fig. 3. Graphs of tλ(x) = ξλ(x) − x for different values of parameter λ

Case-ii (x ∈ [(−r2,λ, −r1,λ) ∪ (−r1,λ, −η1) ∪ (η1, r1,λ) ∪ (r1,λ, r2,λ)]\T0):
Since there is no attractor to attract the system dynamics, the dynamical system will
keep moving indefinitely. Therefore, orbits of ξλ(x) are chaotic for x ∈ (η1, r1,λ) ∪
(r1,λ, r2,λ). Further, since ξλ(x) is an even function, using the above arguments again,
orbits of the function ξλ(x) are chaotic for x ∈ [(−r2,λ, −r1,λ) ∪ (−r1,λ, −η1)]\T0.

b. If λ = λ1, by Theorem 3.1, the function ξλ(x) has a rationally indifferent fixed point x1 and a
repelling fixed point x2. Since t′λ(x1) = −2 and in a neighbourhood of x1 the function t′λ(x)
is continuous, t′λ(x) < 0 in some neighbourhood of x1. Therefore, tλ(x) is decreasing in a
neighbourhood of x1. By the continuity of tλ(x), for sufficiently small δ1 > 0, tλ(x) > 0 in
(x1 − δ1, x1) and tλ(x) < 0 in (x1, x1 + δ1). Further, since t′λ(x2) > 0 and in a neighbourhood
of x2 the function t′λ(x) is continuous, t′λ(x) > 0 in some neighbourhood of x2. Therefore, tλ(x)
is increasing in a neighbourhood of x2. By the continuity of tλ(x), for sufficiently small δ2 > 0,
tλ(x) > 0 in (x2, x2 + δ2) and tλ(x) < 0 in (x2 − δ2, x2). Since tλ(x) �= 0 in (0, x1) ∪ (x1, x2) ∪
(x2, ∞), it now follows that tλ(x) > 0 in (0, x1)∪ (x2, ∞) and tλ(x) < 0 in (x1, x2) (Fig. 3(b)).
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Thus,

tλ(x) = ξλ(x) − x




> 0 for x ∈ (0, x1) ∪ (x2, ∞)

< 0 for x ∈ (x1, x2).
(4.2)

The dynamics of the function ξλ(x) is now described by the following cases:

Case-i (x ∈ [(−x2, −η2) ∪ (η2, x2)]\T0):
By (4.2), it follows that ξ′λ(x) < 1 for x ∈ (η2, x2), ξ′λ(x1) = 1 and ξ′λ(x) > 1
for x > x2, it follows that, using Mean Value Theorem, |ξλ1(x) − x1| < |x − x1| for
x ∈ (η2, x2). Therefore, ξn

λ1
(x) → x1 as n → ∞ for x ∈ (η2, x1). Further, since ξλ(x)

is an even function, using the above arguments again, ξn
λ1

(x) → x1 as n → ∞ for
x ∈ (−x2, −η2)\T0.

Case-ii (x ∈ [(−∞, −x2) ∪ (−η2, 0) ∪ (0, η2) ∪ (x2, ∞)]\T0):
By (4.2), it follows that, for x ∈ (x2, ∞), ξλ(x) > x. Since ξλ(x) is increasing for
x ∈ (x2, ∞), so that ξn

λ(x) → ∞ as n → ∞. Further, since ξ(η2) = x2 and ξλ(x)
is decreasing in (0, η2), so that ξλ(x) maps the interval (0, η2) into (x2, ∞). Now,
using the above arguments, we get ξn

λ(x) → ∞ as n → ∞ for x ∈ (0, η2). Next, since
ξλ(x) is an even function, using the above arguments again, ξn

λ(x) → ∞ as n → ∞ for
x ∈ (−∞, −x2)\T0.

c. If λ1 < λ < λ2, by Theorem 3.1, the function ξλ(x) has an attracting fixed point aλ and a
repelling fixed point rλ. Since t′λ(aλ) < 0 and in a neighbourhood of aλ the function t′λ(x)
is continuous, t′λ(x) < 0 in some neighbourhood of aλ. Therefore, tλ(x) is decreasing in a
neighbourhood of aλ. By the continuity of tλ(x), for sufficiently small δ1 > 0, tλ(x) > 0 in
(aλ − δ1, aλ) and tλ(x) < 0 in (aλ, aλ + δ1). Further, since t′λ(rλ) > 0 and in a neighbourhood
of rλ the function t′λ(x) is continuous, t′λ(x) > 0 in some neighbourhood of rλ. Therefore, tλ(x)
is increasing in a neighbourhood of rλ. By the continuity of tλ(x), for sufficiently small δ2 > 0,
tλ(x) > 0 in (rλ, rλ + δ2) and tλ(x) < 0 in (rλ − δ2, rλ). Since tλ(x) �= 0 in (0, aλ) ∪ (aλ, rλ), it
now follows that tλ(x) > 0 in (0, aλ) ∪ (rλ,∞) and tλ(x) < 0 in (aλ, rλ) (Fig. 3(c)). Thus,

tλ(x) = ξλ(x) − x




> 0 for x ∈ (0, aλ) ∪ (rλ,∞)

< 0 for x ∈ (aλ, rλ).
(4.3)

The dynamics of the function ξλ(x) is now described by the following cases:

Case-i (x ∈ [(−rλ,−η3) ∪ (η3, rλ)]\T0):
Since |ξ′λ(aλ)| < 1, ξ′λ(xmin) = 0, ξ′λ(x) is increasing for x > 0 and aλ < xmin, there
exists a point b ∈ [xmin, rλ] such that |ξ′λ(ζ)| < 1 for all ζ ∈ [aλ, b] ⊃ [aλ, xmin].
Using Mean Value Theorem, it follows that |ξλ(x) − ξλ(aλ)| < |x − aλ| for x ∈ [aλ, b].
Consequently, ξn

λ(x) → aλ as n → ∞ for x ∈ [aλ, b]. For each x ∈ [b, rλ) the forward
orbits contain a point from [aλ, b]. Therefore, same as above, ξn

λ(x) → aλ as n → ∞
for all x ∈ [b, rλ). Hence ξn

λ(x) → aλ as n → ∞ for x ∈ [aλ, rλ). Again, since ξλ(η3) =
= rλ and ξλ(x) is decreasing in the interval (η3, aλ], ξλ(x) maps the interval (η3, aλ]
into [aλ, rλ). Therefore, using the above arguments again, ξn

λ(x) → aλ as n → ∞
for x ∈ (η3, aλ]. Thus, ξn

λ(x) → aλ as n → ∞ for x ∈ (η3, rλ). Further, since ξλ(x)
is an even function, using the above arguments again, ξn

λ(x) → aλ as n → ∞ for
x ∈ (−rλ,−η3)\T0.

Case-ii (x ∈ [(−∞,−rλ) ∪ (−η3, 0) ∪ (0, η3) ∪ (rλ,∞)]\T0):
By (4.3), it follows that, for x ∈ (rλ,∞), ξλ(x) > x and ξ′λ(x) > 1 for x > rλ.
Therefore, ξn

λ(x) → ∞ as n → ∞. Further, since ξλ(η3) = rλ and ξλ(x) is decreasing
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from ∞ to ξλ(η3) as x increases from 0 to η3, ξλ(x) maps the interval (0, η3)) into
the interval (rλ,∞). Therefore, using the above arguments again, ξn

λ(x) → ∞ as
n → ∞ for x ∈ (0, η3). Furthermore, since ξλ(x) is an even function, using the above
arguments, ξn

λ(x) → ∞ as n → ∞ for x ∈ [(−∞,−rλ) ∪ (−η3, 0)]\T0.

d. If λ = λ2, by Theorem 3.1, the function ξλ(x) has a rationally indifferent fixed point at x̃.
Since t′λ(x̃) = 0 and t′′λ(x̃) > 0, so that tλ(x) has minima at x̃. Since tλ(x̃) = 0, tλ(x) > 0 in
a neighbourhood of x̃. By the continuity of tλ(x), for sufficiently small δ > 0, tλ(x) > 0 in
(x̃ − δ, x̃) ∪ (x̃, x̃ + δ). Since tλ(x) �= 0 in (0, x̃) ∪ (x̃, ∞), it now follows that tλ(x) > 0 in
(0, x̃) ∪ (x̃,∞) (Fig. 3(d)). Thus,

tλ(x) = ξλ(x) − x > 0 for x ∈ (0, x̃) ∪ (x̃,∞). (4.4)

The dynamics of the function ξλ(x) is now described by the following cases:

Case-i (x ∈ [(−x̃,−η4) ∪ (η4, x̃)]\T0):
By (4.4), it follows that, ξ′λ(x) < 1 for x ∈ (η4, x̃), ξ′λ(x̃) = 1 and ξ′λ(x) > 1 for
x > x̃, it follows that |ξλ2(x) − x̃| < |x − x̃| for x ∈ (η4, x̃). Therefore, ξn

λ2
(x) → x̃ as

n → ∞ for x ∈ (η4, x̃). Again, since ξλ(x) is an even function, ξn
λ2

(x) → x̃ as n → ∞
for x ∈ (−x̃,−η4)\T0.

Case-ii (x ∈ [(−∞,−x̃) ∪ (−η4, 0) ∪ (0, η4) ∪ (x̃,∞)]\T0):
By (4.4), it follows that, for x ∈ (x̃,∞), ξλ2(x) > x and ξ′λ2

(x) > 1 for x > x̃.
Therefore, ξn

λ2
(x) → ∞ as n → ∞. Next, since ξλ2(η4) = x̃ and ξλ(x) is decreasing

from ∞ to ξλ(η4) as x increases from 0 to η4, ξλ(x) maps the interval (0, η4) into the
interval (x̃,∞). Therefore, using the above arguments again, ξn

λ(x) → ∞ as n → ∞
for x ∈ (0, η4). Further, since ξλ(x) is an even function, ξn

λ(x) → ∞ as n → ∞ for
x ∈ [(−∞,−x̃) ∪ (−η4, 0)]\T0.

e. If λ > λ2, by Proposition 3.1, the function ξλ(x) has no fixed points. We observed that tλ(x) > 0
for all x ∈ R \ {0} (Fig. 3(e)). Since ξλ(x) > x for x > 0, so that ξn

λ(x) → ∞ as n → ∞ for
x ∈ (0,∞). Since ξλ(x) is an even function, ξn

λ(x) → ∞ as n → ∞ for x ∈ (−∞, 0)\T0. Thus,
ξn
λ(x) → ∞ as n → ∞, x ∈ [(−∞, 0) ∪ (0,∞)]\T0.

It follows by Theorem 4.1 that bifurcations in the dynamics of the function ξλ(x) for x ∈ R\{0}

occur at the two critical parameter values λ = λ1 and λ = λ2, where λ1 =
x5

1

sinh2 x1

, λ2 = x̃5

sinh2 x̃
;

x1, x̃ being the unique positive real roots of the equations tanhx = 2x
3 and tanh x = 2x

5 respectively.

The numerical computation of the root x1 of the equation tanh x = 2x
3

gives x1 ≈ 1.287.7 and the

root x̃ of the equation tanh x = 2x
5 gives x̃ ≈ 2.46406. Thus, by (3.3) and (3.2), approximation of the

critical parameter values are λ1 ≈ 1.26333 and λ2 ≈ 2.7.715. Fig. 5 shows the bifurcation diagram for
the function ξλ(x) = λ sinh2 x/x4, λ > 0.

5. Dynamics on Ĉ

The dynamics of the functions ξλ(z) in one parameter family H is described in the following:

5.1. Dynamics of ξλ ∈ H for 0 < λ � λ1

The dynamics of the function ξλ(z) for z ∈ Ĉ and 0 < λ � λ1 is investigated here, where λ1 is defined
by (3.3). The characterization of the Julia set of ξλ(z) in this case as the closure of the set of all
escaping points of ξλ(z) is found in the following:
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Q

(e) Q = (−∞, 0)\T0

Fig. 4. Phase Portraits of the function ξλ(x) = λ sinh2 x
x4

for x ∈ R\{0} and λ > 0

Theorem 5.1. Let ξλ ∈ T and the set of escaping points of the function ξλ(z) be defined by
I(ξλ) = {z ∈ C : ξn

λ(z) → ∞ as n → ∞ and ξn
λ(z) �= ∞}. If 0 < λ � λ1, then the Julia set

J(ξλ) = I(ξλ).

Proof.
By Proposition 2.1, all singular values of ξλ(z) are bounded. It now follows by Theorem 1.1 that

the Julia set J(ξλ) = I(ξλ).
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Fig. 5. Bifurcation diagram for the function ξλ(x) = λ sinh2 x
x4

, λ > 0

The following proposition shows that for 0 < λ < λ1 the Julia set J(ξλ) contains both the real
and imaginary axes.

Proposition 5.1. Let ξλ ∈ H and 0 < λ < λ1. Then, the Julia set J(ξλ) contains both real and
imaginary axes.

Proof.
By Theorem 4.1(a), ξn

λ(x) → ∞ for x ∈ [(−∞,−r2,λ) ∪ (−η1, 0) ∪ (0, η1) ∪ (r2,λ,∞)]\T0 and the
orbits {ξn

λ (x)} are chaotic for x ∈ [(−r2,λ,−r1,λ) ∪ (−r1,λ,−η1) ∪ (η1, r1,λ) ∪ (r1,λ, r2,λ)]\T0, it follows
that R\T0 ⊂ J(ξ). Since ξλ(x) maps imaginary axis on real axis and ξn

λ(x) → ∞ for all x ∈ R\T0,
it gives that iR\iT0 ⊂ J(ξ). Also, since 0 is an asymptotic value which is also a pole, 0 ∈ J(ξ) and
since preimages of pole are contained in Julia set, the set T0 ⊂ J(ξ). Therefore, J(ξ) contains both
real and imaginary axes.

Next, the dynamics of the function ξλ(z) for z ∈ Ĉ and λ = λ1 is described. The following
proposition shows that in this case the Fatou set of ξλ(z) contains a unique parabolic domain:

Proposition 5.2. Let ξλ ∈ H and λ = λ1. Then, the Fatou set F (ξλ) contains a unique parabolic
domain.

Proof.
Let U1 = {z ∈ C : ξn

λ(z) → x1 as n → ∞}. By Theorem 3.1(ii), it follows that ξλ(z) has a
rationally indifferent fixed point at x = x1. Since, by Theorem 4.1(b), ξn

λ(x) → x1 as n → ∞ for
x ∈ (x1, x2)\T0 and ξn

λ(x) → ∞ for x ∈ (0, x1), the rationally indifferent fixed point x1 lies on the
boundary of U1. Thus, U1 is a parabolic domain in the Fatou set of ξλ(z).

Again, by Theorem 4.1(b), it follows that the forward orbits of all singular values either tend
to x1 or tend to ∞. Therefore, by Theorem 1.2, F (ξλ) does not contain any parabolic domain other
than U1.
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In the following proposition, it is found that Julia and Fatou sets of ξλ ∈ H contain certain
intervals of real line for λ = λ1:

Proposition 5.3. Let ξλ ∈ H and λ = λ1. Then, the Julia set contains the intervals (−∞,−x2),
(−x1, 0), (0, x1) and (x2,∞) and the Fatou set contains the intervals (−x2,−x1)\T0 and (x1, x2), where
x1 is a rationally indifferent fixed point, x2 is a repelling fixed point of ξλ(x) and η2 is a positive solution
of ξλ(x) = x2.

Proof.
By Theorem 4.1(b), for λ = λ1, ξn

λ(x) → ∞ for x ∈ [(−∞,−x2) ∪ (−x1, 0) ∪ (0, x1) ∪ (x2,∞)]\T0

and ξn
λ(x) → x1 for x ∈ [(−x2,−x1) ∪ (x1, x2)]\T0. Therefore, the intervals (−x2,−x1)\T0 and

(x1, x2) are contained in the parabolic domain U1. Since Fatou set contains parabolic domains, the
intervals (−x2,−x1)\T0 and (x1, x2) belong to the Fatou set. Further, by Theorem 5.1, the intervals
(−∞,−x2)\T0, (−x1, 0)\T0, (0, x1) and (x2,∞) are contained in the Julia set of ξλ(z). Since pole
and preimages of the pole also belong to the Julia set, it now follows that Julia set are contained the
intervals (−∞,−x2), (−x1, 0), (0, x1) and (x2,∞).

5.2. Dynamics of ξλ ∈ H for λ1 < λ � λ2 and λ > λ2

The present subsection is devoted to the investigation of the dynamics of the function ξλ(z) for z ∈ Ĉ,
λ1 < λ < λ2, λ = λ2 or λ > λ2 is described, where λ1 and λ2 are defined by (3.3) and (3.2). The
characterization of the Julia set of ξλ(z) as the closure of the set of all escaping points of ξλ(z) for
λ1 < λ � λ2 is given by the following:

Theorem 5.2. Let ξλ ∈ T and the set of escaping points of the function ξλ(z) be defined by
I(ξλ) = {z ∈ C : ξn

λ(z) → ∞ as n → ∞ and ξn
λ(z) �= ∞}. If λ1 < λ � λ2, then the Julia set

J(ξλ) = I(ξλ).

Proof.
The proof of theorem is analogous to that of Theorem 5.2 for the case 0 < λ � λ1 and is hence

omitted.
By Theorem 3.1(iii), ξλ(z) has a real attracting fixed point aλ. Let

A(aλ) = {z ∈ C : ξn
λ(z) → aλ as n → ∞}

be the basin of attraction of the attracting fixed point aλ of ξλ(z) for λ1 < λ < λ2. Our next theorem
shows that, in this case, the Fatou set of ξλ(z) does not contain any other basin of attraction of
attracting fixed point aλ except A(aλ):

Theorem 5.3. Let ξλ ∈ H and λ1 < λ < λ2. Then, the Fatou set F (ξλ) does not contain any
basin of attraction or parabolic domain except the basin of attraction A(aλ) of the real attracting fixed
point aλ of ξλ(z).

Proof.
For any point z ∈ A(aλ), the sequence of iterates {ξn

λ(z)} tends to aλ as n → ∞ so that the se-
quence of iterates {ξn

λ (z)} forms a normal family at z. Consequently, z ∈ F (ξλ). Thus, A(aλ) ⊂ F (ξλ).
Further, by Theorem 4.1(c), it follows that the forward orbits of all singular values either tend to

aλ or tend to ∞. Therefore, by Theorem 1.2, F (ξλ) does not contain the basin of attractions other
than A(aλ). That F (ξλ) does not contain any parabolic domains follows similarly using Theorem 1.2.

Remark 5.1. The conditions [22] for existence of wandering domains and Baker domains are not easily
verifiable for the function ξλ(z), therefore the existence of wandering or Baker domains in the Fatou set of ξλ(z)
are not ruled out.

In the following proposition, it is shown that Julia set and Fatou set of ξλ ∈ H contain certain
intervals of real line.
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Proposition 5.4. Let ξλ ∈ H and λ1 < λ < λ2. Then, the Julia set J(ξλ) contains the intervals
(−∞,−rλ), (−η3, 0), (0, η3) and (rλ,∞) and the Fatou set F (ξλ) contains the intervals (−rλ, −η3)\T0

and (η3, rλ), where rλ is a repelling fixed point of ξλ(x) and η3 is a positive solution of ξλ(x) = rλ.

Proof.
For λ1 < λ < λ2, by Theorem 4.1(c), ξn

λ(x) → ∞ as n → ∞ for x ∈ [(−∞,−rλ) ∪ (−η3, 0) ∪
(0, η3)∪ (rλ,∞)]\T0. Therefore, by Theorem 5.2, the intervals (−∞,−rλ)\T0, (−η3, 0)]\T0, (0, η3) and
(rλ,∞) belong to the Julia set of ξλ(z). Since pole and preimages of the pole lie in the Julia set, it
now follows that the Julia set contains the intervals (−∞,−rλ), (−η3, 0), (0, η3) and (rλ,∞). Again,
by Theorem 4.1(c), ξn

λ(x) → aλ as n → ∞ for x ∈ [(−rλ,−η3) ∪ (η3, rλ)]\T0, where rλ is a repelling
fixed point of ξλ(x). Therefore, it follows that the intervals (−rλ,−η3)\T0 and (η3, rλ) are contained in
the basin of attraction A(aλ) of the attracting fixed point x = aλ of ξλ(z) for λ1 < λ < λ2. Since the
Fatou set contains basin of attractions, the intervals (−rλ,−η3)\T0 and (η3, rλ) belong to the Fatou
set of ξλ(z).

The following proposition describes the dynamics of function ξλ(z) for λ = λ2, z ∈ Ĉ and shows
that the Fatou set of ξλ(z) contains a parabolic domain in this case:

Proposition 5.5. Let ξλ ∈ H and λ = λ2. Then, the Fatou set F (ξλ) contains a unique parabolic
domain.

Proof.
Let U = {z ∈ C : ξn

λ(z) → x̃ as n → ∞}. By Theorem 3.1(iv), it follows that ξλ(z) has a rationally
indifferent fixed point at x = x̃. Since, by Theorem 4.1(d), ξn

λ(x) → x̃ as n → ∞ for x ∈ (η4, x̃)\T0

and ξn
λ(x) → ∞ for x ∈ (x̃,∞), the rationally indifferent fixed point x̃ lies on the boundary of U .

Thus, U is a parabolic domain in the Fatou set of ξλ(z).
By Theorem 4.1(d), it follows that the forward orbits of all singular values either tend to x̃ or

tend to ∞. Therefore, by Theorem 1.2, the Fatou set F (ξλ) does not contain any parabolic domain
other than U .

For λ = λ2 also, the Julia set and Fatou set of ξλ ∈ H contain certain intervals of real line as seen
by the following:

Proposition 5.6. Let ξλ ∈ H and λ = λ2. Then, the Julia set J(ξλ) contains the intervals
(−∞,−x̃), (−η4, 0), (0, η4) and (x̃,∞) and the Fatou set F (ξλ) contains the intervals (−x̃,−η4)\T0

and (η4, x̃), where x̃ is a rationally indifferent fixed point of ξλ(x) and η4 is a positive solution of
ξλ(x) = x̃.

Proof.
By Theorem 4.1, for λ = λ2, ξn

λ(x) → ∞ for x ∈ [(−∞,−x̃) ∪ (−η4, 0) ∪ (0, η4) ∪ (x̃,∞)]\T0 and
ξn
λ(x) → x̃ for x ∈ [(−x̃,−η4) ∪ (η4, x̃)]\T0. Therefore, by Theorem 5.2, the intervals (−∞,−x̃)\T0,

(−η4, 0)\T0, (0, η4) and (x̃,∞) belong to the Julia set of ξλ(z). Since pole and preimages of the pole
are also contained in the Julia set, it now follows that the intervals (−∞,−x̃), (−η4, 0), (0, η4) and
(x̃,∞) belong to Julia set of ξλ(z). Again, by Theorem 4.1, the intervals (−x̃,−η4)\T0 and (η4, x̃)
are contained in the parabolic domain U . Since the Fatou set contains the parabolic domains, the
intervals (−x̃,−η4)\T0 and (η4, x̃) are contained in the Fatou set ξλ(z).

The following theorem describes the dynamics of the function ξλ(z) for z ∈ Ĉ and λ > λ2 showing
that the Julia set J(ξλ) contains the real and imaginary axes.

Theorem 5.4. Let ξλ ∈ H and λ > λ2. Then, the Julia set J(ξλ) contains both real and
imaginary axes.

Proof.
By Theorem 4.1(e), ξn

λ(x) → ∞ for all x ∈ R\T0, it follows that R\T0 ⊂ J(ξλ). Since ξλ(x) maps
imaginary axis on real axis and ξn

λ(x) → ∞ for all x ∈ R\T0, it gives that iR\iT0 ⊂ J(ξλ). Since the
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asymptotic value 0 is also a pole of ξλ(z), 0 ∈ J(ξλ) and since preimages of pole are contained in Julia
set, T0 ⊂ J(ξ). Therefore, J(ξλ) contains both real and imaginary axes.

Remark 5.2.

(i) Since ξn
λ (x) → ∞ for all x ∈ R\T0, the forward orbit of critical values on real axis tend to ∞. Further,

the asymptotic value 0 is also a pole of ξλ(z) so that orbit of 0 terminates. Therefore, Fatou set can not
have any basin of attraction, parabolic domain, Siegel disks or Herman rings [7] for λ > λ2.

(ii) The Julia set J(ξλ) for the case considered in Sections 5.1 and 5.2 contain Cantor bouquets, provided
J(ξλ) is shown not to be the whole complex plane [10].

6. Applications and comparisons

The computer images of the Julia sets of the function ξλ ∈ H are generated by the following algorithm
based on Theorems 5.1 and 5.2:

i. Select a window W in the plane and divide the window W into k × k grids of width d.

ii. For each grid point (i.e. pixel), compute the orbit upto a maximum of N iterations.

iii. If, at i < N , the modulus of the orbit is greater than some given bound M, the original pixel is
colored black and the iterations are stopped.

iv. If no pixel in the modulus of the orbit ever becomes greater than M, the original pixel is left as
white.

Thus, in the output generated by this algorithm, the black points represent the Julia set of ξλ(z) and
the white points represent the Fatou set of ξλ(z).

The Julia sets of a function ξλ(z) = λ sinh2 z
z4

, λ = 1.15, λ = 1.35, λ = 2.6 and λ = 2.7 are

generated in the rectangular domain R = {z ∈ C : −6 � Re(z) � 6 and − 3 � Im(z) � 3} and
resulting images of the Julia sets are shown in Fig. 6. To generate these images, for each grid point
in the rectangle R the maximum number of iterations N = 200 is allowed for a possible escape of the
bound M = 100.

The image of Julia set of the function ξλ(z) for λ = 1.15 is shown in Fig. 6(a). It is found that
the Julia sets of the function ξλ(z) for all λ satisfying 0 < λ < λ1 have the same pattern as that of the
Julia set of ξλ(z) for λ = 1.15. This gives a visualization of Theorems 5.1 for 0 < λ < λ1. The nature
of image of the Julia set of ξλ(z) for λ = 1.35(> λ1 = 1.26333) and λ = 2.6(< λ2 = 2.7.715) given by
Figs. 6(b) and (c) have the same pattern as those of the Julia sets of the function ξλ(z) for any other
λ satisfying λ1 < λ < λ2 for a fixed bound M = 100. It is also observed in Figs. 6(b) that taming
effect occurs in the Julia set at λ = λ1. This conforms to the result of Theorems 5.2 for λ1 < λ < λ2.
The nature of image of the Julia set of the function ξλ(z) for λ = 2.7(> 2.7.715) given in Figs. 6(d)
shows a distinct change giving a significantly large number of black points in Julia set in comparison
to the Julia set of ξλ(z) for λ1 < λ < λ2. This demonstrates the chaotic behaviour in Julia set J(ξλ)
when the parameter value crosses λ2. The Julia sets of ξλ(z) for all λ satisfying λ > λ2 is found to
have the same pattern as that of Julia set of ξλ(z) for λ = 2.7(> λ2 = 2.7.715). This conforms to the
result of Theorems 5.2.

Finally, Table 1 gives a comparison between the dynamical properties of non-critically finite even

transcendental meromorphic function ξλ(z) = λ sinh2 z
z4

, λ > 0 with the recent results of Devaney

and Keen [10], Keen and Kotus [15] and Stallard [19] obtained for the dynamics of critically finite
odd transcendental meromorphic function Tλ(z) = λ tan z, λ ∈ C\{0} and the recent results on the

dynamics of non-critically finite transcendental entire function Eλ(z) = λez − 1
z , λ > 0 [14].
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(a) λ = 1.15 < 1.26333 (b) λ = 1.35 > 1.26333

(c) λ = 2.6 < 2.7.715 (d) λ = 2.7 > 2.7.715

Fig. 6. Julia sets of the function ξλ(z) = λ sinh2 z
z4

for different values of parameter λ
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